
COMMUNICATIONS

"This book is required reading for OS/2 programmers looking to build
distributed applications for the Internet or other networked environments."
- Kelly Trammell, Partner, KPMG Peat Marwick

.MANNING

TCP/IP PROGRAMMING FOR OS/2
Steven Gutz

The exploding Internet marketplace beckons program
mers to jump into this fast lane of programming. Up to
now, the publishing world has more or less ignored the
OS/ 2 programmer who wants to develop applications for
TCP/ IP. Steven Gutz fills the void by providing detailed
techniques for creating effective TCP/IP applications
using the C or C++ language. He develops complete 05/2
TCP/ IP applications for ping, news, gopher, and FTP
(complete source code is provided in the companion
disk).

WHAT'S INSIDE
• Developing a class library for nonvisual objects
• Developing a simple PM class library
• Developing a network interface class library
• Building applications

• An improved editor
• A simple PM ping
,... A simple news client
• A basic FTP client

This is not a "TCP/IP for Dummies" book. You should be
an intermediate to advanced programmer, preferably with
some 05/2 experience, who is comfortable with C++ and
the concepts of object oriented programming.

STEVEN GUTZ has been developing software for more
than 12 years, lately focusing on OS/2 programs, and has
written countless applications for the atomic energy, laser,
and communications industries. He is the President of
NeoLogic, Inc., which spe-
cializes in the development
of OS/2 programs for the
Internet.

Manning ISBN: 1-884777-17-1
P-H ISBN: 0-13-261249-6

ISBN 0-13-261249-6

TCP/IP
PROGRAMMING
FOR OS/2

With Applications for
Presentation Manager

STEVEN J. GUTZ

MANNING

Greenwich
(7 4 ° w. long.)

The publisher offers
discounts on this book
when ordered in quantity.
For more information
please contact:

Typesetting: Sheila Carlisle
Copy editor: Doris Eder
Design: Frank Cunningham
Cover: Fernando Gonzalez Bunster

Special Sales Department
Manning Publications Co.
3 Lewis Street
Greenwich, CT 06830
or
lee@manning.com
Fax: (203) 661-9018

Copyright © 1996 by Manning Publications Co.
All rights reserved.

No part of this publication may be reproduced, stored in a retreival system, or transmitted,
in any form by any means, electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Recognizing the importance of preserving what has been written, it is the policy of Manning
Publications to have the books we publish printed on acid-free paper, and we exert our best
efforts to that end.

This book contains source code which is copyrighted by the author and NeoLogic Inc. Using
the base code contained and described in this book, you are free to develop your own
applications for commercial or internal use, or as freeware or shareware, provided you
acknowledge such copyright ownership in your application's product information dialog.

The author and the publisher of this book make no warranties of any kind, expressed or
implied, with regard to the source code and documentation contained in this book or the
companion disk. The author and publisher shall not be liable in any event for any loss or
damages caused by, or arising out of, the use of information contained in this book or the
companion disk.

All products mentioned in this book are trademarks or registered trademarks of their
respective holders. Use of a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

Library of Congress Cataloging-in-Publication Data

Gutz, Steven J.
TCP/IP applications programming for 05/2:
with applications for Presentation Manager I Steven J. Gutz.

p. cm.
Includes bibliographical references and index.
ISBN 1-884777-17-1 (soft cov.)
1. Operating systems (Computers) 2. 05/2 (Computer file)
3. Presentation manager. 4. TCP/IP (Computer network protocol)
I. Title.
QA76.76.063G88 1996
005.7'1265-dc20 96-5959

CIP
969798 99CR10987654321

Printed in the United States of America

PART I

1

2

Contents

PREFACE VII

GETTING STARTED 1

PREPARING FOR APPLICATION DEVELOPMENT 3

Software Requirements 3

Visual Development Tools 5

Additional Tools 6

Compiler Precautions 7

Using MA.KE and NMA.KE 8

Dynamic Link Libraries 10

Project Directory Structure 11

Where to Find Additional Tools and Information 12

Chapter Summary 15

QS/2 AND PRESENTATION MANAGER BASICS 16

What is 05/2? 16

How OS/2 is Structured 20

What is Presentation Manager? 21

How Does PM Work? 23

Goals for PM Applications 31

Common User Access 32

Other Reference Works 36

Chapter Summary 38

iii

3 TCP/IP BASICS
Status Line Class 163

39 Menu Class 166

What is TCP/IP? 39 Slider Class 169

How is TCP/IP Structured? 40 Toolbar Button Class 174

Internet Addressing 42 Toolbar Class 183

Common Internet Protocols 43 Edit Class 199

TCP/IP Sockets 45 Multiline Editor Class 202

Chapter Summary 51 CUA Container Class 221

4
Debug I Data Logging Class 245

CONSIDERATIONS FOR SYSTEM PERFORMANCE 52 Chapter Summary 254

The l;io Second Rule 52 7 Multi threading 53 DEVELOPING A NETWORK INTERFACE CLASS LIBRARY 255

Using Object Windows 57 What is NETCLASS? 255

Chapter Summary 63 The C_CONNECT Class 256

Ping Class 272

PART II BUILDING CLASS LIBRARIES
News Class 278

65 FTP Class 295

5
Developing Other Network Classes 321

DEVELOPING A CLASS LIBRARY FOR NONVISUAL OBJECTS 67 Building a Connection Manager 321

Why Build a Class Library? 67
Chapter Summary 323

The Question of Portability 68
The NVCLASS Class Library 69 PART Ill BUILDING APPLICATIONS 325
The C_INI Class 70
The C_INl_ USER Class 74
The C_INl_SYSTEM Class 76 AN IMPROVED EDITOR 327

The C_THREAD Class 77 Coding the Editor 327

The C_THREAD_PM Class 81 Handling Window Creation 332

The C_SEM_EVENT Class 84 Adding Status Bar Objects 333

Chapter Summary 89 Adding a Multiline Editor Object 334

6
Sizing Up 335

DEVELOPING A SIMPLE PM CLASS LIBRARY 90 Adding a Menu 336

The PMCLASS Class Library
Adding a Toolbar 339

90
Processing WM_ COMMAND Messages 344

Application Class 93
Basic Window Class

Loading and Saving Files 350
99

Standard Window Class
Adding Clipboard Interaction and Word Wrap 353

126
Child Window Class

Loading Dialogs 354
142

Dialog Class
Search and Replace 358

148
Push Button Class

Final Embellishments 367
154

List Box Class
Chapter Summary 367

156

iv v

9 A SIMPLE PM PING

Ping Main Program
Getting Ping Addresses
Ping Product Information Dialog
The Ping Toolbar
Chapter Summary

10 A SIMPLE NEWS CLIENT

Goals for the News Client Application
Building a News Connection Manager
Starting Up a News Client
Listing Available Groups
Managing News Subscriptions
Displaying Message Lists
Viewing Articles
What's Missing?
Dealing with Code Inefficiency
Chapter Summary

11 A BASIC FTP CLIENT

Goals for the FI'P Client Application
Coding the FfP Client
Creating FI'P Connections
Processing FI'P Commands
Closing the Application
Possible Enhancements
Chapter Summary

A NONVISUAL CLASS LIBRARY REFERENCE

B PM CLASS LIBRARY REFERENCE

c NETWORK CLASS LIBRARY REFERENCE

INDEX

vi

368
368
383
387
390
392

393
393
395
402
420
431
438
450
451
452
453

454
454
456
461
462
465
466
467

469

474

490

497

Preface

I first saw 05/2 version 1.0 in 1988 after IBM and Microsoft teamed up to create a

replacement for DOS. Even though only seven years have passed, it all seems like

ancient history. At that time, I was a dyed-in-the-wool DOS programmer, and Win

dows was still too immature to be a contender for my affections. I attended a prod

uct debut for 05/2, and I remember being excited about the arrival of a real

multitasking operating system for the 80x86 platform.
Looking back today, I wonder what I could have been thinking. Here was

an operating system designed for the aging 80286, with poor (to say the least) DOS

support, and system requirements that were well out of the reach of most users.

That first version had no networking capabilities to speak of and no graphical user

interface, two items high on every user's checklist of requirements for a desktop

operating system today. When my initial excitement faded away, I left 05/2 for

dead-although with each new release I snatched another glimpse, just in case

things had improved. However, OS/2 l.x was never the development platform I

wanted. Even though enhancements such as Presentation Manager (PM) and net

working were added, there always seemed to be something missing.
In April 1992, while attending the Borland Developers' Conference in

Monterey, California, our paths crossed once again. This time it was version 2.0,

IBM's first solo version after having shaken free of Microsoft, who was now mar

ried to Windows 3.0. I remember how bitter I had become toward IBM and 05/2,

and as I sat down to an OS/2 demonstration system, I had one intention-to crash

it. However, I played with 2.0 for a while and quickly became enamored with its

vii

viii

features and stability. I clearly remember uttering words like "wow" and "neat" as

I moused around ~e new OS/2 Workplace Shell. Finally, here was an operating

sY:stem that co~d fill my needs. It still lacked some gloss, but it was truly an oper

ating system with the potential to replace DOS and Windows.

~y November 19~2, _I was a confirmed OS/2 fanatic. I purchased the OS/2

Profess~onal Developers ~t from IBM, and devoured every word ever printed on

~e sub!ect of OS/2. Early m 1994, I formed NeoLogic Inc., which specializes in

rmprovm~ us~r perception of OS/2, TCP/IP, and the Internet. NeoLogic took share

ware applications I had been developing since 1992 and expanded them into a

product called the NeoLogic Network Suite, which now includes several applica

tions, inc~uding a full-featured news reader, Gopher, FTP, and mail.

With each new application, I have become more (sometimes painfully)

aware of 0S/2's features and limitations. I developed a set of simple C++ classes to

help pro~u~e ap~lications more rapidly and with fewer bugs. While developing

my applications, it became obvious that really good programmer documentation

for 05/2 is rare. There are, of course, many books "for dummies" which describe

these topics from a new user's perspective, but I found few books "for techno

geeks." This raises the obvious question: Are other OS/2 developers having the

same problems that I faced in the early stages of my OS/2 experience?

. Ba~ed ~n the availability and quality of OS/2 applications, the answer to

this question is a very vocal "Yes." Many aspiring developers have sent me e-mail

asking how to manipulate some aspect of the 05/2 API or TCP/IP socket interface.

In short, people were expressing interest in how the news program was written

n~t because they are all that interested in News itself; rather, they wanted to know

things about programming for OS/2 and how to use the TCP/IP socket interface.

Although I never professe_d to be an "expert" on either of these subjects, I have

man~ged to unearth more information than most OS/2 programmers. This book is

the drre~t result of my res:arch into developing TCP/IP applications for OS/2, and

I am taking the opporturuty to share this knowledge with everyone.

STEVENGUTZ

NSTN4064@FOX.NSTN.CA

PREFACE

Who is the Intended Audience?

This book is intended to span the basics of developing TCP/IP applications for the

05/2 family of operating systems. I have placed emphasis on the C++ program

ming language and the Presentation Manager interface, although most informa

tion in the book applies equally to C and OS/2 Text Mode. Where possible, I have

described the C++ code at the method (member function) level in order to improve

portability to C.
Like any multitasking operating system, developing applications for OS/2

is definitely not for the faint of heart. Furthermore, if you are planning to build

programs designed for TCP/IP interaction, be prepared for many headaches along

the way. However, I will do my best to lead you through the process of building

simple TCP/IP clients from start to finish. I will make a few side trips along the

way to describe the additional complications that the Presentation Manager inter

face adds. I hope that by the time you finish reading this book, you will have the

knowledge to attack your own PM and TCP/IP projects with confidence.

Before we begin, I should describe my assumptions of you. You will, of

course, need to be an intermediate- to advanced-level programmer, preferably

possessing some experience with OS/2. If you have never programmed in OS/2,

Windows, or other message-based OS, then this book is definitely not for you. I

will initially present a few minimal programming examples, but I will quickly

ramp up to building dynamic link libraries and workable applications. I will dive

right into advanced topics, like the use of PM Container controls, once we get

through the preamble in the first part of this book.
I will assume that you know and fully understand the C++ programming

language and the concepts of object-oriented programming. Although the applica

tions developed will sometimes be a hybrid of C and C++, emphasis is definitely

directed toward developing solid, portable class libraries. Most of the source code

for the class libraries is written completely in C++.
Finally, I will assume that you have some understanding of TCP/IP, at least

from a user perspective. You do not need to be a network programming "guru" by

any means, but you will find that some experience with TCP/IP socket program

ming is a definite asset, and working knowledge of TCP/IP applications is essen

tial. I will not delve too deeply into the inner workings of TCP/IP since there are

many excellent books on the subject. Rather, I will describe the basic network

source code used for the socket interface, and will require that you possess only a

minimal background knowledge of what is inside TCP/IP.

How This Book Is Organized

This book consists of three parts. We begin with a little background on OS/2,

TCP/IP, and the Internet, and finish with a handful of working applications and

the knowledge to build your own programs. The book is organized as follows:

PREFACE ix

x

• Part I contains all the information you will need to get started, including
a quick discussion of OS/2, TCP/IP, the Internet, and what tools you
require and how to set them up.

• Part II contains lots of detailed code as we develop and examine class
libraries for the user interface and for networking.

• In Part ill we will create several working applications designed to dem
onstrate the class libraries.

• The Appendices contain reference guides for the User Interface and Net
work class libraries.

Conventions Used in This Book

In order to present the information contained in this book in a consistent manner,
the following conventions are used throughout:

• Except where noted, commands, filenames, and extensions are capital
ized (e.g., CONFIG.SYS).

• This book uses a particular notation for illustrating program objects. An
object will be drawn as follows:

OBJECT NAME

Attribute 1 Method 1
Attribute 2 Method2

• •
• •
Attributen Methodn

Object inheritance will be illustrated as:

PARENTOB CT

Child 2 Object

PREFACE

Source code in this book will follow a coding convention based loosely on
Hungarian notation, originally devised by Charles Simonyi of Microsoft Corp. If
you have never used this notation it might at first seem strange, but it does help
write better code. The notation consists of prefix character(s) for variable names as
follows:

Prefix Data lYPe
c Character

by
b

BYTE or unsigned character
BOOL Boolean type

h Handle to windows, files, etc.

LONG integer
sz NULL terminate character string
u1 ULONG unsigned long integer

When creating instances of structured data types, variable names will be
prefixed as follows:

Prefix Data lYPe
xs Instance of a structure (struct)
xt Instance of a type (typedef)
xc Instance of a class (class)

Some additional modifiers will be used, as shown below:

Prefix Data lYPe
p Pointer to a selected data type

g Global data

Finally, all classes, type definitions, and data structures will be defined
using UPPERCASE characters, preceded by one of the following prefixes:

Prefix Data Definition
S_ Structure definition (Example: S_USER_DATA)'
T_ 'fype definition (Example: T_ADDRESS)
C_ Class definition (Example: C_ WINDOW)

PREFACE
xi

xii

Using This Book

This book is not meant to be read cover-to-cover before delving into the knowl
edge yo.u will find within it. Indeed, I certainly didn't write it from cover-to-cover;
rather, it evolved as I rewrote sections several times. The class libraries were
recoded aga~ and again. Each time I added a feature to one of the applications in
Part III, I realized that I had neglected to add a required method to one of the PM
cla~ses, .or had forgotten to write a class completely. Since all the library code is
written m C++, adding or modifying parts was usually a trivial exercise.

This is the approach I would like you to take in reading and using this book.
The classes I have provided are only a basic framework, and I expect you will want
to add your own features and extensions to the class libraries. You will, of course,
need to add new objects to the network class library in order to implement inter
faces for additional network protocols, such as mail or IRC, but you may also want
to add new members to some of the PM classes, since you will likely find some
omissions made either by accident or intention. The possibilities for enhancements
to the classes in this book are limitless-if you are familiar with Borland's OWL or
IBM ICLUI class libraries, you know what sorts of features can be added. The
b~auty of ~e object-oriented approach of C++ is that, if you decide you want your
wmdow ob1ect to do more, then you may subclass the one I have provided and
add your own extensions, reusing only what you need.

About the Companion Disk

This book includes a companion disk containing all the code for the libraries and
applications developed in the latter sections of the book. This will save you many
hours of work when you begin developing your own applications. The disk also
con~ains some of my favorite freeware and shareware applications, as well as
copies of some of the RFCs referenced in the book.

The source code contained on the companion disk will compile with either
t~e Borland C++ for OS/2 package or IBM VisualAge C++ for OS/2, and project
files have been provided for both compilers.

Finally, the companion disk includes pre-built libraries and DLLs which can
be used with the VisualAge C++ compiler. Executables for the Editor, news FTP.
and Ping are also included on the disk. ' '

To install the companion disk, insert the disk and from an OS/2 command
line type: "D:<Enter>", where "D:" is the drive letter of your disk drive. Then type
"INSTALL<Enter>" to begin the installation process.

PREFACE

Special Thanks
There are a number of people I would like to thank for assisting with the creation
of this book. Most of you have no knowledge of the contributions you have made,
but you have been helpful in ways which cannot be imagined.

To my wife, Nancy, a mother and a business woman, who still managed to
tolerate all of my demands and annoyances while I was creating this book.

To David Reich, thank you for the OS/2 T-shirt, and for introducing me to
"the new IBM." Our candid discussions of OS/2 were instrumental in filling in a
great deal of background information. . .

To David Moskowitz, I am grateful for our candid conversations at the Bor-
land Developer's Conferences and in e-mail over the past few years. Thanks also
for your input and suggestions as a beta tester for the NeoLogic Network Suite.

To Len Dorfman, thanks for asking the simple question, "Would you like to
write a book?" Thanks also for proofreading my incomplete draft copies.

To Tim McGinn, thanks for looking after some of the software development
at NeoLogic while I was distracted writing this book.

To all OS/2 users-without you, there would be no reason for this book.
OS/2 is a nice place to set up business and you are all great neighbors.

PREFACE
xiii

Getting Started

Part I of this book contains the introductory information required to get you

started down the road toward building your own TCP/IP applications. I will dis

cuss TCP/IP and the Internet and also describe the operations your computer per

forms to make OS/2 and Presentation Manager operate effectively. I will also take

a look at the development tools you will need and describe essential software

tools.

' - In this chapter 1

'- ~ - - -- --- . -..:..

./ Software requirements

./ Compiler precautions

./ Additional information sources

Preparing for Application Development

Software Requirements

Software is really where the interests of most of us lie; before you can develop

TCP/IP applications you may need to invest a small fortune to acquire the correct

tools. This is not meant to scare you away from software development, but these

tools can get expensive, especially if you opt for the so-called "professional" pack

ages, which usually include advanced debugging and analysis tools.

Of course, you need to have OS/2 installed on your system. All of the source

code in this book was developed on systems with OS/2 Warp 3.0 installed. Warp

ships with a Bonus Pack disk containing the Internet Access Kit (IAK). This is usu

ally enough to run Internet programs; however, in order to develop these TCP/IP

applications, you will need additional software.
IBM's current product push is directed toward a product called Warp Con

nect. This version of the operating system will likely replace the current, more lim

ited Warp package and will be the only offering available for the upcoming Power

PC system. Warp Connect offers an integrated TCP/IP interface consisting of two

layers of software. The Multi-Protocol Transfer Services (MPTS) contains all the

low-level services to interface to a network interface adapter or to a serial modem

using a SLIP or PPP layer. The second half of the TCP/IP interface is essentially

identical to what the IAK provides, including some basic client applications like

Web Explorer.
If you are building new network applications, you would be wise to recom

mend Warp Connect for your end users since it simplifies the TCP/IP installation

and use; however, as a developer you will still need to purchase the IBM TCP/IP

3

4

Programmer's Toolkit because the libraries and C header files are not included
with Warp Connect.

You will also need a CIC++ compiler. The GNU C/C++ compiler for OS/2

is free; ho~ever, it was not used to develop any of the code in this book, so you

may expenence some unexpected problems. The IBM CSet++ compiler for OS/2 is

adequate, as is the C++ for OS/2 offering from Borland International, and you may

also want to take a look at the Watcom C++ compiler if you are concerned with
portability or executable size.

You will also need a TCP/IP base kit and a Programmer's Toolkit. All the

examples in this book were created using the IBM TCP/IP base pack and Program

mer's Toolkit. FTP Software also offers a complete TCP/IP development system, so

price may be the deciding factor when selecting your development environment.

You can save hundreds of dollars by ordering IBM's Developer Connection

for <?S/2 C~. This is not ~tended to offer a free plug for IBM; the Developer Con

~ecti?n CDs mclude practically everything you will need to build the applications

m this book, as well as lots of additional reference information such as the IBM

OS/2 Redbooks, and a number of abbreviated books related to OS/2 programming.

The Developer Connection CDs represent the best software value you will find for
OS/2 development tools.

. 1:he f~llowing is a list of software required to create the libraries and appli-

cations m this book. These are personal recommendations and do not necessarily

represent the best value or most functional products.

Tool Purpose Manufacturer(s)

Compiler Used to convert sources to object IBMCSet++
format. Borland C++ for OS/2

TCP/IP Base Basic TCP/IP communications suite. IBM TCP/IP

TCP/IP Used to create TCP/IP applications. IBM
Programmer's
Toolkit

TCP/IP utilities Used to gain access to the Internet NeoLogic Network
in order to make inquiries Suite for OS/2
and retrieve information.

Miscellaneous Freeware or shareware applications Pulse, WatchCat,
development tools offering a wealth of capabilities. OS20Memu, SIO

APPLICATION DEVELOPMENT I CHAPTER 1

Visual Development Tools

IBM has recently announced VisualAge C++ for OS/2, which is a new product to

replace CSet++. VisualAge C++ is a development package that contains the com

piler and debugger tools with which you may already be familiar; however, it also

includes an innovative new tool called VisualBuilder, which is a highly graphical

development system. VisualBuilder can'be used to create applications graphically

by dropping "parts" onto a work canvas and connecting them together. Applica

tion construction with VisualBuilder actually involves very little programming at

all, at least in the traditional sense.
This sounds like the ideal environment, but there is one very large draw

back known as a run-time library. The run-time library (which is actually several

dynamic link libraries or DLLs) used by VisualBuilder, is the same one that any

program built with the IBM ICLUI classes uses, and must accompany any applica

tion you develop with VisualBuilder. Including an additional set of DLLs with

your application is not a terrible set-back, except that the combined size of the

ICLUI DLLs typically hovers at around 1 Mbyte. You can pare this down by

remanufacturing the library, but this solution is not an easy one. Alternately, you

can statically link to the ICLUI library, but this does not solve the size problem

either, since the equivalent ICLUI code then gets buried in your executable, bloat

ing it substantially.
An aphorism that I have sworn by for many years is: You can develop appli

cations fast or you can develop them well. VisualAge and most other graphical

development tools live up to this realization. When used as prototyping tools,

applications like VisualBuilder work very well. However, this type of tool typi

cally lacks the luster required for production code and subsequent maintenance

support. You cannot comment a graphical image, so revisiting an application as

part of the maintenance phase of a project can become a serious problem.

Although you could likely develop all of the applications in this book with

VisualAge C++ for 05/2, we will deliberately avoid it. This book is an exercise in

understanding how to build classes for a user interface and networking, and

though I have not specifically touched on the subject, the applications I will build

throughout this book are, for the most part, portable to other operating systems.

You will of course need to rewrite or modify the PMCLASS, NVCLASS, and NET

CLASS classes, but everything else in the applications should recompile on other

platforms with minimal modifications, provided you take care to minimize or

eliminate calls to the OS/2 specific APL
Please do not infer that I dislike VisualBuilder specifically or visual tools in

general. Indeed, Vi~ualBuilder is an excellent tool for prototyping applications

quickly, but realize that you cannot get something for nothing-the convenience of

the VisualBuilder and ICLUI class library comes with an associated cost.

VISUAL DEVELOPMENT TOOLS 5

6

Additional Tools

There are a number of other tools that you will find invaluable while developing

for OS/2. These are summarized in the table below:

Pulse

Pstat

WatchCat

RayGwinn's
SIO serial driver

Theseus/2

OS20Memu

NETSTAT

This CPU performance-monitoring tool ships with the oper

ating system; it can be very useful for detecting CPU-stress

ing conditions. We will discuss the ~o second rule later in

the book, but inevitably you will break this rule, and Pulse

will assist you in identifying when you have done so.

This is another tool that ships with the operating system.

Pstat displays lots of information about the state of the sys

tem. It can show operating data for running process,

dynamic link libraries that are loaded, and semaphore use,
to name a few.

This is probably the best shareware tool for monitoring sys

tem status. It performs essentially the same job as Pstat, but

offers a much improved user interface and the power to

selectively terminate processes-including the Workplace

Shell. The shareware version of WatchCat is on the compan
ion disk.

If you are using a SLIP or PPP connection as your gateway

to the Internet, then you absolutely must have Ray Gwinn's

SIO asynchronous port driver for 05/2. This driver

improves the performance of the serial interface substan

tially ~nd_will noticeably increase your TCP/IP throughput.

You will find the shareware version of the SIO driver on the
companion disk.

Although it is quite expensive, this IBM tool does help

detect memory problems, etc., and offers a level of detail not
found in any other tool.

This is a freeware tool provided by IBM as part of the

Employee Written Software (EWS) initiative. This tool is

useful for detecting and correcting memory leaks in your
code.

This utility is supplied with TCP/IP and is useful for track

ing the use of TCP/IP sockets in the system.

APPLICATION DEVELOPMENT I CHAPTER 1

Compiler Precautions

If you have tried to compile any of the IBM TCP/IP sample applications that ship

with the TCP/IP Programmer's Toolkit using the Borland compiler, you already

know that you run into some annoying inconsistencie~ between the compil~r and

the libraries. The TCP/IP libraries and headers provided by IBM are deadedly

slanted toward their own CSet++ compiler, and will generate compile errors using

most other compilers.
Although you can use the Borland C++ for OS/2 package to develop

TCP/IP applications for OS/2, you will need to make changes to some of Borland's

header files. These changes are required to use the IBM TCP/IP Programmer's

Toolkit, since it references some keywords which are specific to the CSet++ com

piler. These patches may also work for other compilers, such as Watcom C++ or the

GNU compiler. .

You will need to insert a few additional defines into one of the headers files.

Where you do this is not important, as long as you ensure the header file, where

the changes are made, is loaded before any of the TCP/IP headers. For the Borland

compiler the logical place to add these defini~ons is ~e OS2~EF.H header. .

Using a text editor (the Borland IDE will do rucely), e~t the 0?2DEF.H ~e

located in the \INCLUDE subdirectory of the Borland C++ installation. You will

see a section of code as follows:

#if defined(BORLANDC)
#define APIENTRY -=:_syscall
#define EXPENTRY syscall
#define APIENTRY16 -far16 pascal

#define PASCAL16 ::=far16 _pascal

#define CDECL16 far16 cdecl

#define FAR16PTR far16 *
#else

Listing 1 ·1 Part of original Borland OS2DEF.H

In this section, before the #else, add the following:

//Changes to use IBM TCP/IP
#define ·_optlink stdcall

#define Packed
#define _System
#define _Export

_syscall
_export

Listing 1 ·2 Additions to Borland OS2DEF.H

COMPILER PRECAUTIONS
7

8

The IBM CSet++ c~~piler uses these keywords to modify the calling
sequence used when compiling source functions. Generally, Borland offers similar
support but has renamed the items for compatibility with their compiler products
on other platforms, such as Windows and Windows NT.

The second file that needs to be modified is IO.Hin the Borland \INCLUDE
directory. This file contains an incomplete prototype for the ioctl() function. I was
unable to find any reference to ioctl() in the the Borland documentation and librar
~es and I am_ left _wondering why this code is here in the first place. At any rate, the
ioctl() function is correctly defined in the TCP/IP header files, so the erroneous
Borland d_efinition can ~e commented out. In IO.H, find the code shown in Listing
1-3, and either remove it or comment it out.

#ifdef ~IN_IOCTL
int _ RTLENTRY ioctl ();
#else
int _RTLENTRY _EXPFUNC ioctl (int ~handle, int ~func, ...);

/* optional 3rd and 4th args are: void _FAR * ~argdx, int argcx */
#end if

Listing 1 ·3 Removals from Borland 10.H

Once these lines have been added to OS2DEF.H and removed from IO.H,
you should be ready to build any of the TCP/IP applications in this book using the
Borland compiler.

Using MAKE and NMAKE

Th~ IBM CSet+:+ ships with the NMAKE utility, which can perform an incremental
build for any given target file. Borland provides a similar utility called MAKE.

. Almost all th~ executable examples and DLLs developed in this book are
comp~ed from mul~ple source code files. Since you probably don't have the time
or desrre to rec~mpile every_ module each time you make a change, you can use
MAKE to compile from a scnpt t!'at recompiles only those files that are dependent
on any changes yo~ ma~e t~ a given source file, greatly improving compile time.
. The comparuon disk mcludes only NMAKE scripts for CSet++. The Borland
mtegrated development environment supports project files that can be easily con
~erted t? MAKE e~uivalents using the PRJ2MAK utility provided in the Borland
~stallahon. For this reason no MAKE files for the Borland environment are pro
vided on the companion disk.

The following listing illustrates the basic MAKE file structure that I will use
as a quick review of the NMAKE conditional build process.

APPLICATION DEVELOPMENT I CHAPTER 1

Sample MAKE file

Compiler and Linker parameters
cflags = /C /Gm+ /Se /Ss /Ms /Re /Q+ /Gs+ /Kb /Ko+
lflags= /NOE /NOO /ALIGN:16 /M /PM:pm /SE:2048 /noi

Compile Rules
.cpp.obj:

ice $(cflags) $*.cpp

.re.res
re -r $*.re

Build rule for entire project
ALL : base.exe base.mak

Build rule for base.exe
base.exe : base.obj base.res

link386 $(lflags) base.obj, base.exe, base,ODE4MBS+TCP32DLL+S032DLL, base.def;
re base.res base.exe

Build rules for source files
base.res base.re
base.obj : base.cpp base.hpp

Listing 1·4 Sample MAKE file (BASE.MAK)

In this example, the MAKE file BASE.MAK first sets up the default compile
and link parameters in cflags and lflags, then creates rules which will be used to
convert C++ source and resource files to object code. The remainder of the MAKE
file contains dependencies for the various output targets. For instance, BASE.OBJ
will be created if either BASE.CPP or BASE.HPP has changed. This will result in
BASE.EXE being relinked in order to add the new code from BASE.OBJ .

It sounds a bit confusing, and MAKE can initially create almost as many
problems as it solves, but once you build a few MAKE files, you will become
accustomed to their requirements and you should eventually notice some devel
opment benefits. Don't shy away from using MAKE files-they really are nothing
more than'lists of dependency rules.

MAKE is a tool with roots planted firmly in the UNIX world. Manufactur
ers of PC compilers mistakenly believe that MAKE is straightforward, so they
have tended to neglect the creation of adequate documentation for it. The best
place to find information about MAKE is in a UNIX manual set. If you are lucky
enough to have access to UNIX programmer's documentation, you can find very
detailed MAKE information there.

USING MAKE AND NMAKE
9

10

The BASE.MAK file makes reference to some files which you may not
immediately appreciate. The .DEF, .RC, and .RES files are unique to OS/2 PM (and
Windows) so if you have never programmed for OS/2 they will appear alien.
Almost all the applications in Part III will use these files; we'll discuss them in
greater detail at that time.

Dynamic Link Libraries

Chances are good that if you have done any serious programming in the past, you
are already familiar the concept of object libraries. Libraries are used whenever
you have code that you use frequently and choose not to recompile every time you
build your application code. Libraries offer the advantage of convenience, but also
the distinct disadvantage of bloating your application code. Depending on how
the library is constructed, the linker may actually link code from the library that is
not used by the application, thus causing unnecessary code bloat. There is a better
way, however, and it is known as a dynamic link library.

Dynamic link libraries do not really differ from static object libraries very
much. Like static libraries, they can contain all of the common code for applica
tions; however, there are several distinct differences. DLL code is not linked
directly into an application. The linker simply links in a set of pointers to DLL
functions. The results are smaller on-disk applications.

When an application linked to a DLL is loaded, the operating system veri
fies that the DLL is loaded into memory for the program to use. If OS/2 does not
find the DLL in memory, it loads the DLL into memory automatically. Other than
code size, there doesn't appear to be any other significant benefits realized
through DLL use. So where are the advantages of dynamic link libraries?

Well, since the operating system controls the loading of the DLL code, it can
detect when a copy of the DLL is already in memory. If a second copy of the appli
cation is executed, or a second application is developed to use the same DLL, the
operating system ensures that only a single copy of the DLL is in memory to serve
both programs. This means that, no matter how many programs are executing,
there will only ever be one copy of the DLL loaded by the operating system, maxi
mizing the efficiency of available system memory.

DLLs offer a second significant advantage for software maintenance.
Because a DLL is basically a separate program, problems in the field can often be
corrected without having to recompile the application. As long as the function
interfaces in a DLL remain unchanged, they can be rebuilt to add new or corrected
code without needing to recompile any of the applications that use the library.

If you are still not convinced of the advantages of DLLs, remember that Pre
sentation Manager is essentially a collection of DLLs containing hundreds of kilo
bytes of code for the graphics engine, window manager, communications, etc.
Every PM program will use some portion of this code, so if your basic "Hello
World" program did not have the support of the system DLLs it could be as large
as lOOK or more!

APPLICATION DEVELOPMENT I CHAPTER 1

All classes developed in this book will be placed in three DLLs, as follows:

NVCLASS.DLL

PMCLASS.DLL

1his library contains all classes' for non-visual components. 1his
includes classes for threading, semaphores, etc.

1his library contains all classes associated with the components
of an application. Windows, buttons, toolbars, and dialogs are all
part of this library.

NETCLASS.DLL The NETCLASS.DLL implements all network-specific code. 1his
contains a basic network class, as well as more specific classes for
communicating using the News, FfP, and Gopher protocols. You
will likely want to extend this class library to accommodate new
network objects for other protocols you may implement.

These DLLs will be developed in the next part of this book, and will be used
by all of the applications that we will create in Part III.

Project Directory Structure

The companion disk uses a particular directory structure to separate and organize
the source code. Either use this project structure or develop your own architecture,
but do take some appropriate action to keep your documentation and source code
in order. Many projects have gone awry due to poor organization of source code
and electronic documentation. The following diagram illustrates the directory
structure used on the companion disk.

\PROJECT

\SOURCE

\CODE

\INCLUDE

\BITMAPS

\ICONS

\HELP

\BITMAPS

\DOCS

Figure 1·1 Project directory structure

PROJECT DIRECTORY STRUCTURE 11

12

In the structure shown in Figure 1-1 you should rename \APPLICATION to
something that is appropriate for your own needs. The \SOURCE directory con
tains all of the source code related to your application, excluding the source for any
help file you may be planning. Depending on the formality required for your
project, you may have a number of documents you can store in the \DOCS direc
tory. At the very least you will have some sort of bug list and/ or wish list file that
you can store in this subdirectory.

Where to Find Additional Tools and Information

There are a number of sites on the Internet where you can locate additional assis
tance and information. The first place to find an answer to just about any question
is the Usenet news service. Newsgroups represent the largest bulletin board on the
planet; here you will find several groups and thousands of people waiting to
answer your questions (or to have questions answered). I have certainly quizzed
many participants in the OS/2 newsgroups to find information for this book, and
you would be wise to do the same when you begin writing your own applications.
I have summarized some of the Usenet newsgroups catering to OS/2 below, but
don't forget that you may also find answers in several of the 13,000 or more com
mon newsgroups-many questions are independent of the operating system, so
you may want to ask in groups outside the OS/2 domain.

comp.os.os2.announce

comp.os.os2.advocacy

comp.os.os2.apps

comp.os.os2.misc

comp.os.os2.beta

comp.os.os2.bugs

comp.os.os2.multimedia

A moderated group covering news of 05/2 events, new books
or products, and availability of new 05/2 technical informa
tion. A good place to find out about new 05/2 paraphernalia.

An unmoderated group where you can find out about 05/2's
strengths and weaknesses as 05/2 advocates meet advocates of
other operating systems head on. This group can be humorous
reading at times.

If you have questions regarding any current 05/2 applications,
this group is usually the place to go.

This group deals with miscellaneous 05/2 information.

This group contains a discussion of beta releases of 05/2 and
other products.

If you find what you think is an OS/2 bug, you ,can post a
request for assistance in this group. Many of OS/2's developers
and IBM technical people frequent this group, so it's a good
place to get help straight from the source.

This group discusses the multimedia capabilities of 05/2. This
includes setup and use, as well as some programming issues.

APPLICATION DEVELOPMENT I CHAPTER 1

comp.os.os2.networking.misc

comp.os.os2.networking.mail-news

comp.os.os2.networking.tcp-ip

comp.os.os2. programmer.misc

comp.os.os2.programmer.porting

comp.os.os2.programmer.oop

comp.os.os2.programmer.tools

comp.os.os2.setup

comp.os.os2.games

This group provides information about miscellaneous net
working "issues, including discussions of LanServer and Net
Ware, as well as setup for Ethernet cards, etc.

A relatively recent newsgroup specifically designed to support
questions and information related to news and mail programs.

,

This group focuses on TCP/IP networking; you will want to
spend some time here in order to familiarize yourself with the
many protocols involved in successful networking. Contribu
tors are generally helpful, and should be able to resolve any
problems you may have with TCP/IP services or applications.

This group focuses on miscellaneous programming issues
related to 05/2. This is the group where you will ask most of
your programming questions.

This groups discusses issues related to porting programs from
other platforms into 05/2.

If you are interested in object-oriented programming, then start
reading this group. The activity in this group is often minimal,
but it does offer a great deal of insight into tools and techniques
of OOP as they relate to 05/2.

This group discusses the many 05/2 program development
tools available.

If you are having any problems related to setting up your 05/2
system, send your questions to this group.

This is becoming a very popular group as the use of 05/2 for
game-playing and game development increases.

There are also a number of useful FTP and Gopher sites available on the
Internet. Some sites are dedicated to OS/2, while others are good places to refer
ence TCP/IP-related material. I have summarized a few of them below.

ftp://ftp.cdrom.com/pub/os2

ftp:/ /hobbes.nmsu.edu/pub/os2

ftp:/ /software.watson.
ibm.com/pub I os2

This server is one of two main watering holes for those who
thirst for 05/2 software. You will find many megabytes of 05/2
software, ranging from mainstream compilers and applications
to obscure graphing applications, etc.

This is a mirror of ftp.cdrom.com, useful because the previous
site is often quite busy.

This site is IBM's main point for software patches and Employee
Written Software. This includes not only 05/2 patches, but also
updates for IBM's networking products and software develop
ment tools.

WHERE TO FIND ADDITIONAL TOOLS AND INFORMATION 13

14

ftp:/ /ftpOl.ny.us.ibm.net

ftp:/ /ftp.uu.net

Another IBM server, dealing specifically with Warp and Internet
Access Kit developments and patches. You will also find demos
for some of the latest games for OS/2 here.

This is one of many sites containing copies of the RFCs for
TCP/IP. You will also find many other useful programs on this
server, but you will have to hunt a bit.

gopher://os2info.gopher.ibm.com This gopher server contains the entire IBM Employee Written
Software library, as well as patches and newsletters for OS/2.

gopher:/ I gopher.micro.umn.edu The original gopher server at the University of Minnesota, con
taining a great deal of useful information regarding the Gopher
protocol and other data that you may find interesting.

The World Wide Web is exploding into a viable information service and,
naturally, there are web pages dedicated to OS/2 as well. You will find dozens of
invaluable TCP/IP and Internet related pages out there too. In order to give you a
head start on the Web, I have included the following table of relevant home pages.

http:/ /info.cern.ch/ This is the original World Wide Web server. Here you will find a
vast array of information regarding WWW and specifications
for HTML. If you dig around a bit on this server, you will also
find pointers to all of the RFCs for the Internet protocols.

http: I I webster.ibmlink.ibm.com/ This server is supported by IBM and provides press releases and
a list of product specification sheets published by IBM, as well as
customer testimonials for these products.

http:/ /www.ibm.net The main entry point for IBM's OS/2 information services,
where you will find a great deal of OS/2 data, including lists of
current applications, games, and other programs.

http:/ /www.austin.ibm.com This page is provided by IBM for OS/2 developers, more specif
ically for members of the Developer Assistance Program (DAP)
or the Software Developer Operations (SOO) program. Here you
will find information about special offers, beta programs, and
product announcements from IBM.

http:/ /www.teamos2.org This page has been provided for TeamOS/2 use and offers lots of
useful information. It includes a list of recommended shareware
applications for 05/2. All program categories are covered,
including graphics, communications, networking, etc.

http:/ /www.os2bbs.com This page is loaded with interesting 05/2 information including
David Barnes's page of favorite software.

The information outlined above by no means represents a complete list of
on-line sources for TCP/IP or 05/2. In fact, between the time I wrote these words

APPLICATION DEVELOPMENT I CHAPTER 1

and the time you read them, the number of relevant information sources will likely
have doubled or even tripled. If you need some starting points, use a news client
to send a query to an appropriate Usenet group.

Chapter Summary

This chapter has discussed necessary preparation for building TCP/IP applica
tions for OS/2. You should now have a better feeling for the compiler and system
requirements involved, as well as some background on other debugging and
development aids that you may find useful. You should also have a better under
standing of where you can find answers to your questions and additional informa
tion, using the various Internet sources. Finally, you should now have some
appreciation of the methods by which you can organize and manage software
projects.

CHAPTER SUMMARY 15

In this chapter

.I OS/2 and PM message queues

.I Minimal C program for Presentation Manager

.I Common User Access specifications

OS/2 and Presentation Manager Basics

What is OS/2?

OS/2 was originally developed jointly by IBM and Microsoft at three sites:
Microsoft Corp. in Redmond, Washington and IBM at Boca Raton, Florida, and
Hursley in the United Kingdom. Version 1.0 arrived in late 1987 and offered users
a character-based alternative to DOS. Presentation Manager appeared in 1988 as
part of the Vl.1 release; it offered a similar look and feel to Microsoft Windows 2.0.
In the next two years, OS/2's updates seemed to be mired down, but a Windows
3.0 look was added, as well as more printer drivers and a new print spooler.

It was not until early 1992 that OS/2 finally became viable for many users.
By this time, IBM and Microsoft had parted company and IBM was determined to
maintain OS/2 by itself. In the absence of Microsoft, IBM enhanced OS/2 with the
Workplace Shell, seamless Windows support, and true 32-bit code. What emerged
from this work was OS/2 2.0, and the operating system finally started gaining the
recognition it deserved. In 1994 IBM further improved this product and released it
as OS/2 Warp 3.0. In 1995, IBM released "Warp Connect," an enhanced version of
OS/2 which will likely supersede all other versions of OS/2. Connect is definitely
the operating system of the 90's since it includes the basic Warp plus requesters for
many types of network servers, including our main interest, TCP/IP.

Of course, while IBM was building OS/2, Microsoft too was busy: in 1993
Microsoft introduced Windows NT, partly to address the weaknesses in its own
Windows 3.1 product and partly to address the superior platform that OS/2 pro
vided. For the most part, OS/2 compares favorably to NT, with a few notable
exceptions that I will go over now before we get into the general features of OS/2.

16

Even with the release of Warp version 3.0, 05/2 Presentation Manager, like
Windows 3.1, still suffers from the restrictions of a single system message queue,
which complicates application design somewhat. The issues and problems associ
ated with the single message queue will be discussed in detail in Chapter 4, but
this is an excellent time to mention them, since they are part of what makes up
OS/2. In the following two diagrams, you may observe the implications of the sin
gle message queue versus the multiple asynchronous system message queues sup
ported by Windows NT.

Single
port

Message queue

o~ 0
0 0

0 0
0

_________. 0
0

Figure 2·1 OS/2 message model

The OS/2 PM message passing model offers only a single path for messages
to fall out of the system queue. No additional messages can be retrieved until the
current one is completely processed. The result of this is that processing for the
entire PM subsystem can be temporarily halted if the processing for a given mes
sage is lengthy and tedious, or worse, involves some form of infinite loop. The
immediate solution is, of course, to spin off a new thread to handle processing for
the message, but the single message queue is a very serious deficiency in OS/2; it
is to be hoped that IBM is seeking a solution. Incidentally, message queues are
used only in the PM subsystem, so none of these problems apply to a text mode
application running under OS/2.

Message queue

Multiple

~ o oo oooj
0 0 0

- -
message ______.

ports 0 0 0
0 0 0
0 0 0

Figure 2·2 Windows NT message model

WHAT IS 08/2? 17

18

Contrast the OS/2 model with the Windows NT model in Figure 2-2 and
you will quickly note the performance problems associated with the OS/2 queue.
NT imposes no limitations on its system message queue. Since messages can be

pulled out of the queue asynchronously, no system delays are incurred by lengthy
message processing. This does not necessarily equate to faster applications, but
can alleviate some of the burden of designing a multithreaded program.

However, enough highlighting of OS/2's problems, since OS/2's strengths
far outweigh its weaknesses. The intent of this discussion is to make you aware of
one of the key weaknesses of OS/2 PM before we get into the details of how to use

the operating system effectively. Since you now know about this queue deficiency,
you can more easily work around it. Actually, it is my belief that the single system

message queue helps produce better applications. I have seen some really poor
code written for NT, primarily because developers no longer need to concern

themselves with queue usage. The result can be code that features a flurry of mes
sages clogging operating system queues in a very uncontrolled manner.

Let's move ahead to point out some of OS/2's strengths. The best way to

start this journey into OS/2 is by briefly describing the substance of the operating
system. Unlike its predecessor, DOS, OS/2 functions as much more than just a sim

ple program loader and interrupt handler. OS/2 was the first viable 32-bit operat
ing system for the 80x86 Intel CPU architecture, offering most of the advantages of

operating systems for minicomputers but running completely stand-alone on a
desktop system. This isolates the user from the problems and expenses common to
larger computers.

One of OS/2's most impressive features is its ability to multitask preemp
tively (run several programs at once). Each program is protected from the others

so that a crash in one application will rarely result in corrupting data from other

processes or, worse, hanging the entire system. This is because OS/2 allocates a
separate memory region, mouse, keyboard, and display for each application. This

contrasts with the operation of Microsoft Windows 3.1, where all applications are
designed to share common resources; too often this results in two or more applica

tions colliding, typically forcing the user to reboot the computer.
Multitasking in OS/2 is further extended with threading, which is essentially

a higher resolution of multitasking. I alluded to threading when comparing OS/2
to Windows NT, both of which support multithreading. UNIX and a number of

other operating systems can run more than one application simultaneously, but

what sets OS/2 apart is its ability to multitask easily within a program, using

threads. UNIX supports "forking" a process, but this is typically a very costly exer
cise, since, in most implementations of UNIX, it involves loading another copy of

the program into memory. Threads, by contrast, are very cheap to produce, and
incur relatively little overhead on CPU or system memory.

Why use threads? The answer is simple--to improve user responsiveness.

Users like to see things happen immediately, but this is not always possible. In
Windows 3.1, the solution is to display an hourglass to indicate that the system is
busy. In OS/2 an application can start another thread for a long task and let the

PRESENTATION MANAGER BASICS I CHAPTER 2

user continue working without delay. For example, if you are writing a program
that prints a long file to the printer, use a thread. This task typically does not

depend on other things a user might choose to do, so give program control back to
the user and print the document in the background. In Part III of this book you will
find many real-world examples of multithreaded applications.

Deciding where to use threading in an application can be tricky at first, but

with a little common sense and experimentation, you will soon develop a thread
ing instinct. Planning for multithreading is the key. You cannot "stick" the thread
ing in an application after it is written, which explains why so many ports of

Windows applications are abysmal. Threading must be designed into a program
before coding can be started-you cannot effectively plug threads in after an appli
cation is written.

Another key feature of OS/2 is its use of the 32-bit flat memory model, also
referred to as the "0:32 model." Unlike DOS or DOS/Windows, OS/2 does not use

64K segmented memory, which has long been the bane of many DOS developers.
In OS/2 applications each run in their own single 32-bit segment, alleviating the
memory-related problems found in DOS. Memory management is further

enhanced with virtual memory-you don't have to be concerned with memory
constraints as you would in a DOS application when writing OS/2 programs.

Virtual memory, as the name implies, means that your target system can
appear to have more application memory than the system physically contains. If
your system has 6 Mbytes of memory and you want to write an application that

performs data collection of an 8-Mbyte data stream, OS/2 will automatically store
the least recently used data from memory to the system swap file and remap the

physical memory to new addresses as required. The key word in the last sentence
is "automatically"-as a developer, you really do not have to understand how data

actually gets swapped in and out of memory. This entire virtual memory operation
is transparent to you and your program.

OS/2 adds to its memory capabilities with sparse memory management; if
you create a 512-Kbyte buffer and store only a few kilobytes of data, the whole

512K of memory is not allocated. OS/2 allocates memory in 4K blocks, and typi
cally commits memory only when required, but this is user-configurable.

With each new version of OS/2, IBM has improved the system requirements
and performance of the operating system; on most hardware its stability now
rivals many implementations of UNIX. With the 1994 announcement of OS/2 Warp

3.0, IBM's operating system has finally blossomed into a complete tool, and is
attracting Windows users who have been looking for more power and stability.

OS/2 users now have almost everything they need to work effectively, including a
"works" package with a word processor, database, and spreadsheet, a terminal

communications program, and most importantly, integrated one-button access to
the Internet. This last feature alone is responsible for introducing many new users
to the world of global networking.

WHAT IS OS/2? 19

20

How OS/2 is Structured

OS/2 is built using a layered software approach, each layer further isolating the
user from the hardware. IBM has taken care to avoid most of the bottlenecks asso
ciated with excessive software layering. To improve usability and performan~e,
IBM's operating system developers have taken some shortcuts, so ~ere are c~
cumstances where layers might be skipped. The PM subsystem, for mstance, will
perform calls directly to the video hardware under certain conditions, eliminating
time-consuming interactions with the kernel or video drivers. You need not be
concerned with the details of these inner workings of OS/2, which are beyond the
scope of this book. It is sufficient to understand the layered approach, as illus
trated in the following diagram.

When TCP/IP or any other networking module is added to an OS/2 system,
it simply becomes another subsystem in the ?S/2 architec~~· These. subs:>'."stems
tend to be very specific, and consequently will usually av01d mteraction with the
kernel or other subsystems. The TCP/IP subsystem interfaces directly with the
device driver for the network hardware, and usually has little interaction with the
kernel while performing its intended duties.

The following diagram illustrates, in block form, the layers of software in a
typical OS/2 system. The arrows indicate communication between the layer~. The
dash line indicates a possible situation where a layer of software may be skipped
to improve efficiency.

User

Applications

Graphic Subsystem Other Subsystems

OS/2 Kernel

Device Drivers

Hardware

Figure 2·3 OS/2 architecture block diagram

Unlike DOS, 05/2 provides no low-level INT21 interface to access operat
ing system services. OS/2 does provide something called an IOCTL Application
Program Interface (API) to perform lower-level operations such as s~rial co~~
cations, but even this interface is at a much higher level than anything provided m
DOS. Each OS/2 subsystem provides its own set of API calls, which both enhances
and complicates the development of software. OS/2 provides approximately 250

PRESENTATION MANAGER BASICS I CHAPTER 2

DOS calls, 300 PM calls, and hundreds of other miscellaneous API calls. Fortu
nately, IBM adopted a consistent and intuitive approach for naming these calls. For
example, to create a window you would use the WinCreateWindow() call. It
sounds simple, but of course things are not always what they seem to be. Building
OS/2 applications can still be a tedious task at times-the real secret is to get a solid
design in place before you even start thinking about API interfaces and source
code.

A key point to understand is that although OS/2 provides this rich array of
subsystems, you do not need to write an application that interfaces to all of them.
I discussed message queues in the previous section, and as I noted there, the limi
tations imposed by the single message queue apply only to PM applications. As
shown in Figure 2-3, PM is just one of the many subsystems in OS/2, and it is not
necessary to use it at all in an application. As with DOS, you can write text-based
applications that do not use a message queue at all. If you are writing a heavy-duty
data acquisition program that really has no requirement for a fancy user interface,
then you would be better off to avoid PM altogether. This isn't a big problem for
the operating system, since it has been designed to let graphical and text-mode
applications coexist.

What is Presentation Manager?

Presentation Manager, as the name implies, is a layer of software in OS/2 that man
ages all aspects of the presentation of any graphical information on the video dis
play and other output devices, such as printers and plotters. PM is not itself a
Graphical User Interface (GUI), rather it is an application programming interface
providing a set of tools for programmers to use when writing applications for a
GUI. The real GUI for 05/2 is the Workplace Shell.

In reality, PM is simply a group of dynamic link libraries (DLLs) containing
the hundreds of API calls needed to control and manipulate the graphical display.
Its purpose is to isolate you, the programmer, from the low-level parts of the com
puter system, such as the keyboard, mouse, or screen. Because the PM subsystem
is in place on top of the OS/2 kernel, you do not have to provide dozens of drivers
for varying display resolutions or potentially hundreds of printer drivers for the
myriad of output devices on the market. PM manages all of this for you, permit
ting you to concentrate solely on designing and building your applications.

All Presentation Manager API calls begin with the letters "Win" to distin
guish them from APls for other subsystems in OS/2, and as mentioned previously,
there are about 300 different PM API calls provided by the operating system. You
should not be discouraged by this number, however, because the format of these
calls is reasonably consistent and, with a little work, you will become familiar with
them. The on-line documentation for the PM Toolkit describes each of these 300
calls in great detail, and often includes examples of the use of an API, so answers
to your questions are never very far away.

WHAT IS PRESENTATION MANAGER? 21

2 2

Presentation Manager, like Microsoft Windows, is event driven. This means

that program control typically lies within the operating system rather th~n your

application. If you have ever written a DOS program, you kn~w ~at there is really

very little response from the OS unless, of course, your application as~s for some

information. When you elect to print something, for example, you can srmply grab

control of the printer to write out your data. In OS/2, however, all interaction with

the hardware must be "approved" by the operating system.

The DOS mentality fails in an event-driven system, due in part to the fact

that the whole user interface is layered on top of a multitasking operating system.

In OS/2 you cannot arbitrarily grab control of anything because some other pro

cess may be running concurrently and may be accessing the hardware you are

attempting to use. The solution is to drive everything by passing event messages

around the system. If your application and OS/2 were people, they would actually

be carrying on conversations by passing messages like the following:

OS/2:

Application:

OS/2:

Hey application, the user told me that you have to print

something on the laser printer.

I want to print "Hello World" in 10-point Courier font.

OK, it's been printed.

or:

OS/2: The user has done something to cause your window to get

messed up, so repaint yourself.

Application:

OS/2:

Application:

OS/2:

I want to repaint now.

OK, here is a paintbrush you can borrow.

I'm done painting, here's your paintbrush back.

Thanks.

In both of these conversations it is the operating system that initiates the

dialog based on some user interaction. If the user presses a mouse button, the

operating system looks to see where the mouse pointer is locat~d, and ~en

informs the correct application that the user did something that reqmres attention.

This is a pretty simplistic view of what occurs inside the operating system

because, while OS/2 is talking to your application, it can also be carrying on other

conversations with dozens of other programs, device drivers, and even itself. But

the real beauty of OS/2 and PM is that this conversational model is really all you

have to understand to write effective applications.

The event-driven world is based primarily on the principle "Don't call us,

we'll call you." If you have previously programmed only in DOS, where the

reverse is true, this may seem confusing, but by studying some programming

examples you should quickly get up to speed. Later in this chapter you will find a

few examples of absolute minimums for a PM program; these will be used as the

basic framework for all applications presented in this book. As you will see, when

PRESENTATION MANAGER BASICS j CHAPTER 2

we add functionality to the user interface, we need only add a new message han

dler to support it. It's like playing with building blocks-everything just connects
together!

How Does PM Work?

The best way to describe how PM works is to show you a minimal example pro

gram for Presentation Manager. This application does nothing but display an

empty window, which you can resize, move, or close. But before we do this we

need to understand a few of the basic concepts involved with PM programming.

PM programs usually start with the creation of a standard application win

dow much like the one shown in Figure 2-4. This window is really a collection of

child windows, typically consisting of a title bar, some system buttons, perhaps a

menu, and a sizable border. The central blank area of this window is called the cli

ent area and is the location where any child windows will be created. In order for

an application to create and display a standard application window, the Presenta

tion Manager API provides a WinCreateStdWindow() API, which must be

invoked as part of the program initialization procedure.

• D

Figure 2-4 Minimal example program output

Child windows are responsible for displaying output or collecting input

from the user. These windows, which can take many forms, are said to be owned

b~ the application window. This typically means that they will be enclosed or

clipped to the application window, but this is not a hard and fast rule. Dialog boxes

ar~ also considered to be child windows, and they can extend beyond the bound

anes of the client window. A standard client window is a simple borderless can

vas, ~caled to the dimensions of the client area, on which any child windows will

be displayed. It is a relatively simple process, however, to create child windows

that are not bound to the client area.

How DOES PM WORK? 23

24

A final window type you will hear mentioned in 05/2 programming is a

control window. Control windows comprise the "gadgets" of the PM interface.

Although they include simple buttons, check boxes, etc., more advanced types like

notebooks and containers are also considered control windows. PM predefines a

Common User Access (CUA) compatible series of child windows that can be

added to a client window using the WinCreateWindow() call. A client window

may create one or more of these child windows in order to process user input or

display output.
Let's look at the minimal PM program code in C. First the header file:

11----------------------
11 Internal Definitions\

11--
#define D_APPNAME "Minimal PM App"

#define D ID WINDOW 1

11---------------------
11 Function Prototypes \

11--
MRESULT EXPENTRY WndProc(HWND, ULONG, MPARAM, MPARAM);

Listing 2-1 Minimal C example: H file

Listing 2-1 contains the entire contents of the header file for our minimal C

program. There isn't much here-just definitions for the program name, "Minimal

PM App" and a window ID, which I will explain shortly. You will also note a func

tion prototype for the window procedure used by the program. For such a simple

example we could have avoid the header file completely, but it has been imple

mented for consistency with other applications in the book. Now let's take a look

at the C source.

11-------------
11 Definitions \

11--
#define INCL_WIN

11---------------
11 Include Files \

11--
#include <os2.h>
#include "hello.h"

11---------
11 WndProc \

11--
11 Window Procedure
II All messages sent to the main window are processed by this function.

PRESENTATION MANAGER BASICS j CHAPTER 2

II This function is called by the operating system.

MRESULT EXPENTRY WndProc(HWND hWnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{

HPS hps;
RECTL re;

switch(msg)
{

case WM_PAINT:ll Process paint messages

II Get a handle to our presentation space
hps = WinBeginPaint(hWnd, OL, &re);

II Fill our client rectangle with some neutral color
WinFillRect(hps, &re, SYSCLR_APPWORKSPACE);
GpiSetColor(hps, CLR_NEUTRAL);

II Tell PM that we are finished painting
WinEndPaint(hps);
break;

default: II Let PM process anything that we don't do here
return WinDefWindowProc(hWnd, msg, mpl, mp2);

II Tell PM that we took care of the message we care about
return (MRESULT)FALSE;

int main(void)
{

HAS hAB;
HMQ hmq;
HWND hWnd;
HWND hWndFrame;
QMSG qmsg;
ULONG flCreate;

II Initialize the PM interface for our application
hAB = Wininitialize(O);

II Create a message queue for this app.
hmq = WinCreateMsgQueue(hAB, O);

II Register our window class with the operating system

WinRegisterClass(hAB, (PSZ)D_APPNAME, (PFNWP)WndProc, CS_SIZEREDRAW, O);

II Create an instance of our application window on the desktop

How DOES PM WORK? 25

26

flCreate = FCF TITLEBAR I FCF_SYSMENU I FCF_SIZEBORDER I FCF_BORDER
I FCF_MINBUTTON I FCF_MAXBUTTON I FCF_TASKLIST I FCF_SHELLPOSITION;

hWndFrame = WinCreateStdWindow(HWND_DESKTOP. WS_VISIBLE. &flCreate.
(PSZ)D APPNAME, (PSZ) "Basic PM Program", 0,

- NULLHANDLE, D_ID_WINDOW, &hWnd);

II Start the message loop to monitor the system queue for any messages
II That belong to this app.
while(WinGetMsg(hAB. &qmsg, OL, 0, 0))
{

II Found a message belonging to us, so dispatch it to our window
II procedure
WinDispatchMsg(hAB, &qmsg);

II The user closed our app window, so destroy the window
WinDestroyWindow(hWndFrame);

II Disconnect from the system message queue
WinDestroyMsgQueue(hmq);

II Deinitialize the PM interface
WinTerminate(hAB);

II Return to the operating system
return D;

Listing 2·2 Minimal C example: C file

The C file in Listing 2-2 has a little more code, in fact it seems to have quite
a lot of code for a program that does absolutely nothing. I think.we had ?etter
parse through it to find out why it takes about 40 lines of code to display a simple
window on the screen.

Let's start with the first few lines, which are really quite simple. The header
file 052.H is the "include all" header for compiling 0512 programs and is gener
ally required for every program you will compile for the 0512 environment. The
INCL_WIN definition, placed before the OS2IH include, tells the compiler to
build in all of the PM subsystem headers. The header files define other INCL_XXX
definitions to reduce the number of items which get included from 05/2 and PM
headers, but for the examples in the book I have elected to include everything sup-
plied in the headers for the development ~oolkit. . . .

Let's now skip to the second function, mam(), smce that is where the pro
gram execution really begins. From your previous C or C++ experience.you know
that every program needs a main() routine, since this is what the opera~g system
calls when you run a program. A PM application is no different, since it too must

PRESENTATION MANAGER BASICS I CHAPTER 2

have a main(); however, there are a few peculiar things happening in the sample
main() that you likely haven't seen if you have never used PM. If you look at the
main code, you see first:

hAB = Winlnitialize(O);

The program calls Winlnitialize(), which initializes the Presentation Man
ager engine for the program and returns something called a handle to an anchor
block. The first PM call made by any program must be to Winlnitialize(), since it
sets up the application environment in a particular way that provides access to the
graphical interface. The anchor block terminology is derived from IBM's main
frame background, and really is meaningless on an 05/2 platform, so I will leave
it at that. Many API calls require the anchor block value to be passed, and although
it is not used by the current version of 05/2, you should pass it correctly to ensure
upward compatibility with future versions of the operating system.

Near the end of the main() function, you will see a line:

WinTerminate(hAB);

This is the opposite of Winlnitialize(), which frees the anchor block and
shuts down the PM graphics engine for the application. You should call this in all
PM programs, just before they terminate.

Immediately after the call to Winlnitialize(), a call is made to create a mes
sage queue:

hmq = WinCreateMsgQueue(hAB, 0);

I briefly mentioned message queues in a previous section in this chapter
and pointed out that all communication between the operating system and a Pre
sentation Manager program is done by passing event messages. When the operat
ing system has a message in the system queue that it needs to send our application,
it needs a place to store it in, a place where our sample application can find it when
it needs to process the message-an application message queue. So we need to call
WinCreateMsgQueue() to say to PM: "Here's my mail box. If you have something
to tell me you can drop it in here."

Now that we have created a queue, our application is ready to start negoti
ating with 05/2 to create an application window. The first step is to inform OS/2
where the window procedure for our window is located. To do this we need to reg
ister our new window class with PM, so we make a call:

WinRegisterClass(hAB, (PSZ)D_APPNAME, (PFNWP)WndProc, CS_SIZEREDRAW, 0);

This call tells PM the name of the window class we are registering
(D_APPNAME) and the address of the window procedure we have created for this
class. All window classes must be registered with the operating system before they

How DOES PM WORK? 27

28

can be used by a program. As you will see later, there are a number of predefined

window classes already registered with Presentation Manager that we can use. For

these classes, PM provides its own window procedure, so there is no need to reg

ister new window classes for them.
Now that we have informed PM about our new window class, we can cre

ate an instance of it. To do this we write code as follows:

flCreate = FCF TITLEBAR I FCF SYSMENU I FCF_SIZEBORDER I FCF_BORDER
I FCF_MINBUTTON I FCF=MAXBUTTON I FCF_TASKLIST I FCF_SHELLPOSITION;

hWndFrame = WinCreateStdWindow(HWND_DESKTOP, WS_VISIBLE, &flCreate,
(PSZ)D APPNAME, (PSZ)"Basic PM Program", 0,

- NULLHANDLE, D_ID_WINDOW, &hWnd);

The first line defines the style of window we want. In this example, we say

create a window with a title bar, a system menu, sizable borders, etc. The WinCre

ateStdWindow() line looks confusing, but is really quite simple. We pass it a han

dle to the owner window, the desktop in this case, and decide that the new

window will initially be visible. Then we pass in the creation flags defined on the

previous line. Next we tell PM what class of window this is-note that we use the

same name we used for the call to WinRegisterClass. Finally, we pass in an initial

window title and an ID (1). Every window requires a unique window ID, which

PM uses to deliver control event notifications.
WinCreateWindow() then attempts to create an instance of the new win

dow. If the window creation was successful, PM will insert a message

(WM_CREATE) to the message queue to indicate that the window has been cre

ated. When we process this message we can perform any start-up initialization

required to put our window in the correct state.
The final step in getting our minimal PM application running is to start a

message loop, to look in our application message queue, and dispatch any mes

sages found there to the window procedure, WndProc, which was defined by the

WinRegisterClass() call.

while(WinGetMsg(hAB, &qmsg, OL, 0, 0))
{

II Found a message belonging to us, so dispatch it to our window
II procedure
WinDispatchMsg(hAB, &qmsg);

Notice that the message loop does not actually call WndProc, rather it calls

WinDispatchMsg(). So how does the message get to our WndProc message proces

sor? WinDispatchMsg() looks to see which application queue the message is

directed to and sorts out which of its known window classes should get the mes

sage. It calls the correct window procedure with the message and any additional

information attached to the message.

PRESENTATION MANAGER BASICS I CHAPTER 2

The next logical piece of this puzzle is the window procedure contained in
WndProc() routine.

switch(msg)
{

case WM PAINT: II Process paint messages

II Get a handle to our presentation space
hps = WinBeginPaint(hWnd, OL, &re);

II Fill our client rectangle with some neutral color
WinFillRect(hps, &re, SYSCLR APPWORKSPACE);
GpiSetColor(hps, CLR_NEUTRAL-);

II Tell PM that we are finished painting
WinEndPaint(hps);
break;

default: II Let PM process anything that we don't do here
return WinDefWindowProc(hWnd, msg, mpl, mp2):

II Tell PM that we took care of the message we care about
return (MRESULT)FALSE;

It looks simple enough-just one big conditional switch statement in which

we have coded only a single case, WM_PAINT, and a default case. We know that

when an instance of the application window gets created, PM sends a

WM_CREATE message to the window procedure, but we have elected to ignore
that message, so what happens to it?

WinDefWindowProc() in the default case grabs all messages for which our

sample program has no use. This is a handy function provided by Presentation

Manager, which takes any message is that not processed by the window procedure

and handles it in a default way. We didn't really need to intercept WM_PAINT

messages in this minimal example, either, since WinDefWindowProc() can per

form default processing on any message. The WM_PAINT message processing is

provided only to demonstrate what an actual message processor looks like. Our

paint message handler simply paints the client rectangle gray and sets the fore

ground (text) color to CLR_NEUTRAL, which would turn out to be black if we had
displayed some text.

This is all the minimal example in C entails. The full source code for this

example is on the companion disk, and you can compile and run it if you wish to

play around. However, having described how a C program works, let's forget

about it, since, as you will see a little later in this book, we will use a different

approach with C++ and avoid a lot of the headaches associated with PM program

ming, cleaning up the programmer interface at the same time.

How DOES PM WORK? 29

30

In Listing 2-3, you can see what we are heading for as far as ease of design
and understanding are concerned. This listing demonstrates the ~ame program
ming example, using the PMCLASS library that will be developed m the next part
of this book.

#define
#define

INCL DOS
INCL WIN

#include <os2.h>
#include <app.hpp>
#include <window.hpp>
#include <winstd.hpp>

DECLARE MSG TABLE{ xcMsg)
DECLARE_MSG{ WM_PAINT, C_WINDDW_STD::MsgPaint)

END_MSG_TABLE

void main{ void)
{

C APPLICATION xcApp;
C_WINDOW_STD xcWindow{ xcMsg);

II Register and create a new program window
xcWindow.Register{ xcApp.AnchorBlock{), "TestClass");

II Set the window characteristics
xcWindow.WCF SizingBorder{);
xcWindow.WCF-SysMenu();
xcWindow.WCF-TaskList();
xcWindow.WCF-ShellPosition();
xcWindow.WCF-MinButton();
xcWindow.WCF-MaxButton();
xcWindow.WCF=TitleBar();

xcWindow.Create(1, "Minimal PMCLASS Program");
xcWindow.Show();

II Start the message loop
xcApp. Run();

Listing 2·3 Minimal PM example using PMCLASS

I will not describe the example in detail here, since I would be getting too
far ahead of myself, but notice that we have reduced the number of lines of.code
from about 40 down to around 20. Further, the 20 lines we generate are easier to
understand (if you know C++). Even knowing nothing ab_out_P~CLASS, Y?u
should be able to grasp some understanding of the program m L1stmg 2-3. Notice

PRESENTATION MANAGER BASICS I CHAPTER 2

that there is no message window procedure. This way we can avoid the large and
awkward switch() statement found in the previous example. This makes code
debugging and maintenance much easier.

Instead of the window procedure, the C++ example uses something called
a message table, as shown below:

DECLARE MSG TABLE(xcMsg)
DECLARE_MSG(WM_PAINT, C_WINDDW_STD::MsgPaint)

END_MSG_TABLE

Message tables are not magical in any way, but they do reduce the complex
ity of the Presentation Manager code somewhat. The message table from the exam
ple has one entry, which states that a WM_PAINT message gets intercepted by a
method called MsgPaint() defined in the C_ WINDOW _STD class. This method is
not coded in any of the sample program source code; rather, it is buried inside the
parent object code. This saves us a few lines of code that would otherwise be dupli
cated in almost every frame window we create.

The message table scheme used in PMCLASS is similar to the technique
Borland uses in their Object Windows Library (OWL) class library. Naturally, Bor
land's library is much more complete than the one presented in this book, but if
you are determined, you can make PMCLASS every bit as comprehensive. IBM
adopted a similar approach with their competing product ICLUI, but their design
is complicated by much multiple inheritance of objects. I have avoided multiple
inheritance in the classes developed in this book, since it confounds the code sub
stantially and tends to increase the size of finished applications significantly.

Goals for PM Applications

Before you can really start writing programs, you need to be aware of some of the
goals that you should aim for when writing Presentation Manager applications.
This is not as obvious as you may think because there is much more involved than
simply getting the job done. Indeed, the most important goal is to make it easier
for the user to perform his/her job, but this is really a very general statement. How
do you accomplish this feat with your software?

If you remember nothing else in this book, remember this: The primary
responsibility of any 0512 application is to provide remarkable response to the end
user-not just adequate response, but remarkable. If you ever have the opportunity
to attend one of David Moskowitz's talks on 0512 application development, you
will quickly realize that he harps on this point endlessly, and rightly so. What this
statement means is that when the user presses a key, he expects something to occur
and it is your purpose as a developer to ensure that it does. The user will neither
expect nor accept unnecessary delays or system stoppages, and building programs
that avoid these pitfalls is really not difficult if you correctly apply a few rules to
your OS/2 program development.

GOALS FOR PM APPLICATIONS 31

32

I hate to point fingers, since my own code is far from perfect, but I once had

occasion to use Arni Pro for OS/2, and one startling effect I noticed was that it was

slower than the Windows version! I couldn't believe this. The reason, of course, is

largely attributable to the fact that Lotus tried to build their OS/2 applications as

Windows programs would be built, and of course this doesn't work. In Windows,

it is acceptable to chew up lots of CPU cycles to process messages-the system is

not a truly multitasking operating system, so the user really cannot do anything

else anyway. However, in OS/2, users quickly grow accustomed to performing

several tasks simultaneously, so when they find a program that hogs the entire sys

tem, they protest (an experience I have had the misfortune to deal with firsthand).

In all fairness to Lotus, they have recently updated their OS/2 offering and now

promise better performance.
Lotus does not stand alone with this problem, either. Many, if not most, ex

Windows developers also suffer from this. The early versions of my news reader

possessed some really ugly characteristics directly attributable to my Windows

past. Fortunately, I absorbed the concepts of OS/2 and Presentation Manager so

that applications I write now are much better, though I dare not say perfect.

This inability of Windows-driven software companies to write good OS/2

applications also has some devastating effects for the OS/2 platform. Users try a

company's OS/2 applications and decide that they are terrible; after finding a few

bad applications (and there are many), users begin to doubt the capabilities of

OS/2 and the whole promise of 32-bit software. The vicious circle becomes com

plete, as companies complain that the OS/2 market is nonexistent because no one

is buying their products, and in the end everyone sticks with Windows.

This problem is not unique to OS/2, either; Windows NT is also suffering

from the same disease. Companies are refusing to write NT applications because,

although their current Windows programs run somewhat slower under NT, they

do run. The result is that, with the exception of Microsoft, very few companies are

willing to risk their bottom lines on NT. It remains to be seen whether software

houses will be willing to invest large chucks of development money on Win

dows'95 for exactly the same reasons.
Your goal for writing OS/2 applications, then, should primarily be to satisfy

the end user. The only way to do this is to forget what you know about any other

operating system and learn how to write programs specifically for OS/2. Other

goals include CUA compliance, program stability, and good old fashioned perfor

mance, but all of these really combine to meet the primary goal.

Common User Access

Common User Access, or CUA, is one of four parts of System Application Archi

tecture (SAA), which is a standard developed by IBM and used to implement all of

their software. IBM has published this standard and it is freely available for every

one to learn and utilize. The collective goal of SAA is to provide a framework that

PRESENTATION MANAGER BASICS I CHAPTER 2

programmers can use to develop consistent applications for IBM's system plat
forms, including 05/2 and 05/2 for the Power PC.

The CUA quarter of the SAA standard deals specifically with the user inter

face portion of an application, and defines the display and operation of all visual

controls within a program. The primary goals of Common User Access are:

• Improved consistency and usability within an application.

• Consistency across all applications.

• User- rather than computer-controlled dialog.

• Application-transparent interface (object-oriented desktop).

This really means that all CUA-compliant applications will have the same

look and feel so that users can "expect" programs to operate in a certain way.

You should make every attempt to ensure that your own applications are

compliant with the CUA standard. If you develop a new program that has a non

standard feel, users may mistakenly develop the opinion that your program is

cumbersome. If you make your living by writing software, a nonstandard inter
face could hurt your bottom line.

The programs developed in this book are, for the most part, CUA-compli

ant, though no attempt has been made to ensure this compliance. Much of the

CUA stand~rd is unavoidable, since Presentation Manager controls the display of

most graphical elements. Controls such as list boxes, containers, and even buttons

are all CUA-compliant and unless you subclass them and radically change their

presentation, you will have little difficulty producing solid CUA applications.

However, there are occasions when Presentation Manager does provide

you with the option of deviating from the CUA standard. Menus are a good exam

ple: CU~ states that all applications should have a main menu at the top of the

ma.m wmdow. (IBM calls these action bars). Though you cannot easily move an

action b~r, you can elect to disregard the standard and not display one at all. Your

users will be completely lost without the action bar, however, so do not do this as

a general rule. A typical action bar is shown in Figure 2-5.

_lie fdlt .Qptlons Help

Figure 2·5 Typical action bar

If the application you are writing needs to open, save, or print user files, the

CU~ standard states that the program should provide a File option as the first

avail?ble selection on the action bar. CUA further suggests a standard layout for

the File submenu, as shown in Figure 2-6.

COMMON USER ACCESS 33

34

file 1! £dlt ~
New I
Qpen ...

~ave
Save ~s ..•
Aytosave ...

Figure 2-6 Standard File submenu

If the application interacts with the clipboard to copy, cut, or. past~ data,
then an Edit option should follow the File selection on the action bar. L1kew1s~, ~e
Edit submenu has a recommended predefined format, and also makes prov1s1on
for accelerator keys (key combinations that provide the same functionality as the
submenu selection). Figure 2-7 illustrates a typical Edit submenu.

Edit II .Qptlons .tlelp -
Undo Alt+Backsoace

CU! Shlft+Delete
~opy Ctrl+lnsert
easte Shift+lnsert

Cl~ar Delete

E.lnd ... Ctrl+F
Select ~ll

Figure 2-7 Standard Edit submenu

Finally, all applications should provide some form of on-line help so that
your user does not need to keep referencing the printed manual. CUA also defines
a standard Help submenu, which should appear as the last option on the action
bar. Figure 2-8 shows a sample Help submenu.

ttelp 11

Helo Index
!ieneral help
![sing help
Keys help

Product Information

Figure 2·8 Standard Help submenu

PRESENTATION MANAGER BASICS I CHAPTER 2

The final option on the Help submenu is Product Information. If a user
selects this option, your application will display a dialog box containing informa
tion about itself (e.g., copyright data, version information, etc.) All PM applica
tions in this book will provide a product information dialog; you can see examples
in Part Ill.

Figure 2-9 shows the product information box used in the NeoLogic News
program. This dialog is a good place for you to tell your users who you are, what
the program does, the version, etc. Usually the only control you will present to the
user is an "OK" button to cancel the dialog and return to the normal program.

-

NeOLoglc Inc.

NeoLoglc Ping tor OS/2 -·· ~lit-....................

1ill

Figure 2-9 Typical product information box

CUA also specifies keyboard accelerators for many operations, as men
tioned earlier in this section. Accelerators are the key combinations that a user can
select as an alternative to using the mouse to perform menu selections. They are
commonly referred to as "shortcut keys." For example, every user knows that
pressing the Fl key will invoke help. The following table includes a list of common
operations and their equivalent CUA standard accelerator key combinations. This
is by no means a complete list of CUA accelerator keys, but does describe the most
common operations that you are likely to perform in an application.

Action Accelerator Description

Undo Alt+ Backspace Reverses the user's most recent editing action.

Cut Shift+Del Removes the currently selected item or text and
copies it to the system clipboard.

Copy Ctrl+Ins Duplicates the currently selected item or text on
the system clipboard without removing it from its
original location.

Paste Shift+Ins

COMMON USER ACCESS

Copies the contents of the system clipboard into an
object at its current insertion point.

35

36

Action

Clear

Help

Help for
Help

Extended
Help

Help
Index

Accelerator

Del

Fl

Shift-FlO

F2

Fll

Description

Removes the currently selected item or text from
an object.

Displays context-sensitive help for a control for
field within an application.

Describes how to use the help system provided by
the operating system.

Optionally provides the user with help by describ
ing the tasks and contents of the application win
dow. Extended help can additionally include
operating procedures and processes.

Displays an alphabetically sorted index of all help
topics for the application.

We need not dwell on Common User Access any further. It is enough for
you to know that this standard exists and that it controls virtually every physical
aspect of an application. Unless you have a real desire to have your own copy of
the CUA standard, the easiest place to find most information about it is by looking
at other programs, particularly those from IBM, which are all CUA-compliant.

Other Reference Works

There are many reference materials for OS/2 and TCP/IP. I have listed a few below,
but this is just a skeleton for a complete library.

Programming the OS/2 Presentation Manager-Charles Petzold
Petzold is one of the best authors in the industry, and although some of the
material in this book is becoming dated, it is still a favorite reference for
many OS/2 programmers. If you are just beginning to develop OS/2 appli
cations, this book is a necessity. Petzold assumes you know almost nothing
about OS/2 or Presentation Manager and gradually introduces many
aspects of the operating system and user interface. ISBN 1-55615-170-5.

Designing OS/2 Applications-David Reich
This book does not contain much example code; however, it is a detailed
study of the methodologies one should use for developing OS/2 applica
tions. Before you begin to develop OS/2 applications, you should read and
understand this book. ISBN 0-471-58889-X.

PRESENTATION MANAGER BASICS I CHAPTER 2

Client Server Programming with OS/2-Robert Orfali and Dan Harkey

This book has become the standard by which all other OS/2 programming
books are gauged. It is an excellent reference for developing networking
applications, and also describes Presentation Manager and Workplace Shell
programming in some detail. ISBN 0-442-01219-5.

Internetworking with TCP/IP, Vols. I to III-Douglas Comer and David Stevens

This is good set of books to get you up to speed on the protocols and archi
tecture of TCP/IP and the Internet. ISBN 0-134-7422-2.

TCP/IP Illustrated, Volume I-W. Richard Stevens

This book is another excellent reference, which accurately describes what
TCP/IP and the Internet are all about. ISBN 0-201-63354-X.

The Internet Yellow Pages-Harley Hahn and Rick Stout

The Yellow Pages is not a programming book at all, nor is it specific to OS/2.
This book is probably the most comprehensive compilation of the resources
available on the Internet. It is organized much like the yellow pages of a
telephone directory, and includes Internet addresses for almost every sub
ject one could possibly think of. In short, if the information you seek is
available on the Internet, then you will likely find a listing for it in this book.
ISBN 0-07-882098-7.

Common User Access-Advanced Interface Design Guide-IBM

This specification describes IBM's methodology for Common User Access
(CUA). It represents years of study in the science of Human Factors-how
people interface with machines. In this guide you will find information con
cerning almost every aspect of interface development. How should a list
box act? What format should a help file have? CUA can answer these ques
tions and many more. IBM Doc# SY0328-300-R00-1089.

On-line Documentation

There is an endless list of on-line documentation for OS/2 and PM program
ming as well. A few of the more common places to look for answers are
shown below. After installing your compiler tools, the PM Toolkit, and the
TCP/IP Programmer's Toolkit, you should have most of these.

CSet++ C Library Reference
CSet++ Programming Guide
PM Toolkit Control Program Guide and Reference
PM Toolkit Presentation Manager Reference
TCP/IP Programmer's Reference
IBM OS/2 Redbooks, Volumes 1 though 4

OTHER REFERENCE WORKS 37

38

Internet RFCs (Requests for Comment)
The RFCs contain detailed specifications of most network _rrotocol~ ~sed on
the Internet. They also contain a wealth of other information descnbmg the
history and development of the network. To read and understand all of the
RFCs would be a feat in itself, since there are well over 500 documents, but
there are a few you will want to reference. Available via anonymous FfP to
ftp.uu.net and many other locations on the Internet.

Chapter Summary
This chapter has covered the basics of OS/2 .and Pre~entation Manager. Since this
book is not meant to discuss the inner workings of either OS/2 or PM, an atte~pt
has been made to keep this chapter short and direct. I began witi:1 the assumpti~n
that you know something about OS/2 and PM, or you ~~ve previously worked m
Windows so not much of this chapter should be surpnsmg to you. Nevertheless,
I hope ~t, although you may already be writing OS/2 applications: _this 0-apter
has given you insight into concepts that you may not have been familiar with.

PRESENTATION MANAGER BASICS I CHAPTER 2

r---. ----- - . - -- ----
r In this chapter
~~ - • - -- ' ••· -- - -- _J

,/ Basic TCP/IP structure

,/ Common TCP/IP protocols

,/ Minimal TCP/IP socket application

TCP/IP Basics

What is TCP/IP?

Transmission Control Protocol/Internet Protocol is, without question, the single
most popular networking protocol in the computer industry. It is supported on
virtually every platform from the largest mainframe to the smallest notebook.
Recently Personal Digital Assistants (PDAs), such as the Apple Newton, have also
gained the capacity to use TCP/IP in a limited form. It is the basic platform on
which the entire Internet is based.

Using TCP/IP as a development platform is, of course, your main purpose
for reading this book, so it is important to understand the basic background and
concepts before you can build an application. The model for TCP/IP is remarkably
simple, especially considering the power that it offers computer users.

TCP/IP is the product of evolution rather than revolution. In the late 1960s,
the Advanced Research Project Agency began work on a project called ARPANET
which was funded by the U.S. government. The goal of ARPANET was to develop
a distributed network to permit the U.S. Department of Defense and its contractors
to exchange information more rapidly.

In the 1970s, TCP/IP became the standard protocol defined by ARPANET
and quickly gained acceptance from most industry researchers. By the mid-1980s,
virtually every major research computer site in North America was connected to
the Internet via TCP/IP, including defense contractors, government agencies, and
most universities. When first recognized as a network in 1983, the Internet had 213
registered hosts; just three years later there were over 2000. Today there are several
million hosts connected world wide; considering its current popularity, it is diffi
cult to believe that the Internet did not exist at all less than 15 years ago.

39

40

Since its inception, TCP/IP has been expanded to support many network
services, such as e-mail, FTP, news, interactive communications-the list is virtu
ally endless. New services are usually specified through the creation of a Request
For Comment (RFC), which is a networking protocol specification that can be writ
ten and submitted freely by anyone with a need to communicate with others.

How is TCP/IP Structured?

TCP/IP was developed using a standard created by the International Standards
Organization known as Open Systems Interconnection or ISO/OSI. This seven
layer architecture has become the basis for virtually all networks, including those
based on TCP/IP. The diagram below illustrates the seven-layer OSI model.

For the purposes of this book, it is not imperative that you understand the
various middle layers of this model. It is enough that you know that at the lowest
level is your network hardware (Ethernet, ISDN, modem, etc.) and that the top
most layer is where your applications are built.

During the course of developing the programs in this book, you will also
interface with the Presentation layer; this will be discussed, as required, in later
chapters. Your interaction with this layer will be accomplished through the TCP/IP
socket Application Programmer's Interface (API). Like most APls, there are dozens of
special-purpose calls; however, we will use a very limited set of them. The socket
API is relatively standard across most platforms, and you should have little diffi
culty finding information on API calls not discussed in this book.

7
Application Layer

Telnet, FTP, Gopher, etc.

Presentation Layer
Application Programming Interface 6

5 Session Layer

Transport Layer
TCP, UDP 4

Network Layer
IP, ICMP, ARP, RARP 3

Data Link Layer
Link-level interface, Medium Access Control (MAC} drivers 2

Physical Layer
Ethernet, Token Ring, FDDI, serial modem 1

Figure 3-1 ISO/OSI model for TCP/IP

TCP/IP BASICS I CHAPTER 3

All communications in TCP/IP occur between a client and a server using
datagrams. Datagrams are the basic unit of information throughout TCP/IP. They
consist of one or more data packets that are transferred across the Internet using
the code in the TCP/IP Transport Layer. The data packets that make up a datagram
can be of virtually any size, and typically include header and trailer data to control
delivery and accuracy of the data.

Packets travel between clients and servers using assigned data ports. A port
is an end point for communication between applications, which typically refers to
a logical connection and typically provides the capability to queue data being
transmitted or received. When the port number is combined with an Internet
address, the resultant address is referred to as a socket address. Specific port num
bers have been reserved for most of the common protocols. News, for instance,
uses port 119, but as long as the client and server are using the same port, any one
will do.

Socket addresses are another very commonly used terminology in TCP/IP
programming. A socket address is simply a unique address created by combining
a data port and an Internet address. TCP/IP programs usually communicate at the
socket level. Once the network classes are developed in Chapter 6, you will really
require little knowledge of ports and sockets, unless you are planning to write a
new protocol class; even then the knowledge required will be minimal.

TCP/IP supports two levels of communications-one at a low level called
User Datagram Protocol (UDP), and a higher level technique called Transmission
Control Protocol (TCP). With UDP packet transmission, packets are sent and
received in an unreliable fashion, with only header and data checksums provided,
but no retransmission is performed for lost or erroneous data packets. TCP proto
cols, such as NNTP News or Gopher, operate at a higher level than UDP. These
protocols can perform retransmission in the event of packet loss and are generally
much more reliable than UDP.

There are number of methods by which a computer can implement TCP/IP
at the physical layer. Most schemes typically involve a fast hardware solution, like
Ethernet or Token Ring. This usually means that a special hardware board has
been inserted into the computer to provide communications at rates of 10 Mbits
per second or faster. However, many users of OS/2 Warp have adopted much
cheaper but slower implementations of TCP/IP, referred to as Serial Line Internet
Protocol (SLIP) or Point-to-Point Protocol (PPP). These implementations typically
involve a modem connection via telephone to a local Internet provider. Once a
connection is established, the computer is issued either a static IP address or a
dynamically defined one (different with each connection). If you want to find
more detailed information about SLIP, refer to RFC 1055.

How IS TCP/IP STRUCTURED? 41

42

Internet Addressing

All computers on the Internet can be identified by a unique 32-bit address called
an Internet Protocol (IP) address, usually specified as 132.223.34.18, for example.
However, each computer may also have a domain name speci~cation string as
well (e.g., computer.interlink.net). To use the domain name string, ~ou ~eed to
have access to a domain name server (or DNS) which converts the string into the
appropriate IP. Most Internet service providers provide a name server for their
customers, so users generally do not have to surf around the Internet to find.o~e.

A standard Internet address uses a two-part, 32-bit address field consisting
of the network address and the local address. Internet addresses can be identified
as one of four types, classified as A, B, C or D, depending on the bit allocation.
These formats are shown in the following diagrams.

Class A addresses have a 7-bit network number and a 24-bit local address.
The highest order bit is set to 0:

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

O I Network I Local Address

Figure 3-2 Class A Internet addressing

Class B addresses have a 14-bit network number and a 16-bit local address,
with the highest order bits set to 01:

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Network I Local Address

Figure 3-3 Class B Internet addressing

Class C addresses have a 21-bit network number and an 8-bit local address,
with the three highest order bits set to 110:

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

1 1 O I Network I Local Address

Figure 3-4 Class C Internet addressing

TCP/IP BASICS I CHAPTER 3

Class D networks are multicast addresses that are sent to selected hosts on
the network. The four highest order bits are set to 1110. Note that some implemen
tations of TCP/IP do not support class D network addressing.

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

1 1 1 0 Multicast Address

figure 3-5 Class D Internet addressing

As mentioned previously, a commonly used notation for Internet host
addresses is the dotted decimal, which divides the 32-bit address into four 8-bit
fields. The value of each field is specified as a decimal number, and the fields are
separated by periods to create an address string like 128.234.23.12.

Common Internet Protocols

A number of common protocols are currently used with the Internet and TCP/IP,
and we should quickly review the most common of them before we proceed with
coding any applications. These protocols range from a very low level, such as IP, to
higher level protocols, such as FTP and News.

Internet Protocol (IP)

The Internet Protocol (IP) provides the code to create an interface from the TCP/IP
transport layer protocols to the physical-layer protocols. IP is the basic transport
mechanism for routing IP packets from one Internet gateway to another. IP pro
vides the capability to transfer data blocks from a source host to a destination host,
identified by fixed-length addresses. The IP address header is automatically pre
fixed to all outgoing data packets and removed from incoming packets.

IP makes no attempt to ensure reliable data transfer between hosts, and
does not provide error control for the data within the packets. It does checksum
data headers, however. IP does not assume or interpret any relationship between
individual packets-each is treated as a separate entity, unrelated to any other
packet. Reliability checking is assumed to be performed by higher level protocols
using IP for data transfer. For more information about the IP interface, see RFC 79.

Internet Control Message Protocol (ICMP)

Internet Control Message Protocol (ICMP) transfers control messages among
hosts, gateways, and routers in the network. ICMP messages can be issued in the
following typical situations:

CoMMON INTERNET PROTOCOLS 43

44

• When a host needs to check to see if another host is available (PING).

• When a host is unable to transmit a packet to its intended destination.

• When a gateway or router can direct a host to send traffic on a shorter
route.

• When a host requests a data time stamp.

• When a gateway or router does not have the buffering capacity to for
ward a packet.

ICMP has the capability to provide dynamic feedback concerning p~ssible
problems in the communication environment. The use of ICMP does not m any
way guarantee that an IP packet will be delivered reliably or tha~ an ICM~ mes
sage will be returned to the originating host when an I~ packet IS not delivered
correctly. You can find out more about ICMP by referencing RFC 795.

Address Resolution Protocol (ARP)
Address Resolution Protocol (ARP) is a low-level protocol that maps Internet
addresses to network hardware addresses. TCP/IP uses ARP as a means through
which collection and distribution of information for mapping tables can be
achieved. The ARP protocol is typically unavailable for use by developers or
applications, but runs behind the scenes to provide ARP broadcast pa~k~ts for
addresses that do not relate to the mapping table. For a complete descnption of
mapping tables, see TCP/IP Illustrated. For more information about the ARP proto
col, refer to RFC 826.

Transmission Control Protocol (TCP)
Transmission Control Protocol (TCP) provides a reliable mechanism for transfer
ring packets from one Internet host to another and is by far the preferred method
of data transfer. The protocol accepts streams of data that it converts to datagrams
and then individually transmits using IP. The destination end of the TCP connec
tion reassembles the datagrams and creates a new data stream. During the trans
mission and reception, TCP detects corrupted or missing datagrams and requests
retransmission as required. For more information about TCP, see RFC 793.

User Datagram Protocol (UDP)
User Datagram Protocol (UDP) provides an unreliable communication mechanism
to move data from an Internet source to a desired destination. UDP is a datagram
level protocol lying directly above the IP layer, and is used for appli~ati.on to app~
cation data transmission between TCP/IP host programs. UDP IS slIDllar to IP, m
that it provides no guarantee that a given datagram will be correctly transferred or
duplicated. However, it does offer checksums for both the header and data por
tions of datagrams. Since it offers no delivery protection, the UDP protocol should
be avoided in applications requiring even a moderately reliable delivery system.
You will find complete details of UDP in RFC 768.

TCP/IP BASICS I CHAPTER 3

File Transfer Protocol (FTP)
The File Transfer Protocol (FTP) is an application layer protocol providing the
capability to transfer data, files, and programs between hosts. Because FTP is built
on top of the TCP protocol, it offers reliable transfer.

Later in this book I will develop a simple application implementing the FTP
protocol. The application will have the capacity to transfer text or binary files from
remote systems onto your local drive. The program will also be able to issue com
mands to list remote directories, create new directories, and delete old files and
directories. RFC 959 details the FTP protocol and its various commands. I will
describe this protocol in some detail in Part III of this book.

Network News Transfer Protocol (NNTP)
The Network News Transfer protocol (NNTP) is another application protocol spe
cifically developed for reading Usenet news articles. Like FTP, it supports a num
ber of commands that can be issued to the news server to retrieve newsgroup and
article information. NNTP is starting to show its age, however. It offers no mecha
nism to monitor or abort data transfers, and does not provide support for any form
of data compression. News is a very popular protocol that daily moves several
hundred megabytes of data across the Internet.

In Part III of this book, I will present a working but limited news applica
tion to demonstrate NNTP. The RFC describing NNTP is RFC 977.

Gopher Protocol
The Gopher protocol is also an application protocol that was developed at the Uni
versity of Minnesota. Gopher is actually the precursor to the World Wide Web, and
offers most of the capabilities of WWW without the flashy interface. Though
WWW has quickly eaten up much of the Gopher market, many power users still
prefer it, since it is incredibly fast by comparison with WWW and simple to use. In
the next part of this book, I will also implement a working Gopher client. You can
find out more detailed information about the Gopher protocol in RFC 1436.

TCP/IP Sockets

Now that we have briefly discussed TCP/IP sockets, it is a good time to see what a
simple C socket program looks like. When we develop the NETCLASS library in
Part II of this book, we will be able to simplify this example greatly by eliminating
most of the socket code. But the C example is a good stepping stone.

This simple example does not really constitute a complete program by any
means, but will serve to make a point. The program creates an FTP connection to
ftp.cdrom.com and, once the connection is established, the program sends an FTP
"SYST" command. This command causes the server to return a string indicating
which type of FTP server it is running. Finally, the program sends an FTP "QUIT"
command to end communications with the server. After each of the FTP com
mands, the program prints the string returned from the server.

TCP/IP SOCKETS 45

46

#define INCL DOS

#include <os2.h>
#include <stdio.h>

#include <types.h>
#include <sys\socket.h>
#include <netinet\in.h>
#include <netdb.h>

int main(void)
{

11 FTP Port

int
int
int
char
char

iResult;
iSocket;
iPort = 21;
*szServer = "ftp.cdrom.com";
szBuffer[512);

II Example server

struct hostent
struct sockaddr in

*pxtHost;
xtSocket;

II Initialize the socket for corrmunications
sock_init();
iSocket = O;

II Resolve the host
xtSocket.sin_addr.s_addr = inet_addr(szServer);
if((LONG)xtSocket.sin_addr.s_addr == -1
{

pxtHost = gethostbyname(szServer);
if(pxtHost == NULL)
{

II Error getting host so terminate
printf("Error:Could not get host information\n");
return -1;

bcopy(pxtHost->h_addr, &xtSocket.sin_addr, pxtHost->h_length);

II Open a socket for this connection
;socket= socket(AF_INET, SOCK_STREAM, 0);
if(iSocket == -1)
{

II Error getting socket so terminate
iSocket = O;
printf("Error:Could not create socket\n");
return -1;

TCP/IP BASICS I CHAPTER 3

II Connect to the correct port
xtSocket.sin family = AF !NET;
xtSocket.sin=port = htons(iPort };

if(connect(iSocket, &xtSocket, sizeof(xtSocket)) < O)
{

II

II Error connecting so terminate
iSocket = O;
printf("Error:Could not connect\n");
return -1;

II At this point we are connected and ready to go.
II
printf("Connection successful!!\n" };

II Send a command and get a response
send(iSocket, "SYST\r\n", (short)6, O);
iResult = recv(iSocket, szBuffer, (short}512, O };
if(iResult > 0)
{

pri ntf ("SYST Response String = %s 11
, szBuffer) ;

II See ya!
send(iSocket, "QUIT\r\n", (short}6, O);
iResult = recv(iSocket, szBuffer, (short)512, O);
if(iResult > O)
{

printf("QUIT Response String= %s 11
, szBuffer);

II Close the connection
shutdown(iSocket, 2);
soclose(iSocket);

return O;

Listing 3·1 Minimal socket example

. Let's analyze this simple network program. The first task performed is to
include the various required header definition files as such:

#define INCL DOS

#include <os2.h>

TCP/IP SOCKETS 47

48

#include <stdio.h>

#include <types.h>
#include <sys\socket.h>
#include <netinet\in.h>
#include <netdb.h>

This includes 052.H, as in previous examples, but it also includes some of
the TCP/IP headers you can find in the \INCLUDE directory of your TCP/IP Pro-
grammer's Toolkit installation. .

Among the variable definitions you find:

int
char

i Port = 21;
*szServer = "ftp.cdrom.com";

11 FTP Port
II Example server

This configures the test program to connect to FfP.CDROM.COM, an FTP
server, using the FTP port, which is universally defined as port 21. .

Then the TCP/IP environment is initialized for the program using:

II Initialize the socket for conmunications
sock_init();

This API must be called before any other TCP/IP call, and is usually located
near the beginning of a program. .

After the socket interface is initialized, the program needs to determine
where it is connecting:

II Resolve the host
xtSocket.sin addr.s addr = inet_addr(szServer);
if((LONG)xtSocket.sin_addr.s_addr == -1
{

pxtHost = gethostbyname(szServer };
if(pxtHost == NULL)
{

II Error getting host so terminate
printf("Error:Could not get host information\n") ;
return -1;

bcopy(pxtHost->h_addr, &xtSocket.sin_addr, pxtHost->h_length);

First it attempts to use the contents of szServer as an IP address. This fails,
of course, because we have provided a domain string instead. ~e program then
tries to determine the destination by calling gethostbyname(), which should work
correctly if you are currently connected to the Internet.

TCP/IP BASICS I CHAPTER 3

Next, the program needs to open a socket to establish communications
between the client and the selected host:

II Open a socket for this connection
iSocket =socket(AF INET, SOCK STREAM, 0);
if(iSocket == -1) - -
{

link.

II Error getting socket so terminate
i Socket = O;
printf("Error:Could not create socket\n");
return -1;

Finally, the program connects to the socket to establish the communications

//Connect to the correct port
xtSocket.sin_family = AF_INET;
xtSocket.sin_port = htons(iPort);

if(connect(iSocket, &xtSocket, sizeof(xtSocket)) < 0)
{

II Error connecting so terminate
iSocket = O;
printf("Error:Could not connect\n");
return -1;

At this point the program can begin sending commands and receiving
responses. The TCP/IP API offers several calls to perform these tasks; I have
selected the more common send() and recv() functions. Note that each time a com
mand is issued (e.g., SYST), a response string is collected. Almost every Internet
protocol works this way, but if you neglect to retrieve the return string, the input
buffers will eventually fill up, which will definitely not produce correct results.
Synchronization of command transmission and return results is crucial. The exam
ple prints the result strings returned from the server so you can see live examples
of typical resultant messages.

Once the program has completed its "chat" with the server, it needs to close
and destroy the socket. This is accomplished with the API calls:

II Close the connection
shutdown(iSocket, 2);
soclose(;socket};

You can use the NETSTAT program provided in the TCP/IP base package to
examine network port activity while this program is operating. Simply open a

TCP/IP SOCKETS 49

50

second OS/2 command window on your desktop and run "NETSTAT -s" concur-
rently with your network program. .

When we discussed the C language Presentation Mana~er e~ample m the
previous chapter, I suggested that a C++ class library would snnplify the u~ of
PM. Similarly C++ can ease TCP/IP programming j~st ~s _well. The following
example duplicates the functionality of the C example m Listing 3-2.

#define
#define

INCL DOS
INCL PM

#include <os2.h>
#include <stdio.h>

11-----------------
11 PMCLASS Headers\
11---
#include <app.hpp>
#include <window.hpp>
#include <winstd.hpp>
#include <winchild.hpp>
#include <dialog.hpp>
#include <edit.hpp>
#include <pushbtn.hpp>
#include <menu.hpp>
#include <status.hpp>
#include <button.hpp>
#include <tbar.hpp>
#include <mle.hpp>
#include <contain.hpp>
#include <log.hpp>

#include <net.hpp>
#include <netftp.hpp>

int main(void)
{

int iPort = 21;
int
char

iResult;
*szServer = "ftp.cdrom.com";

II FTP Port

II Example server

II Create an FTP network object
C_CONNECT_FTP xcFTPClass("ftp.cdrom.com", iPort, NULL);

II Open a connection to the FTP server
if(xcFTPClass.Open())
{

II II At this point we are connected and ready to go.

TCP/IP BASICS I CHAPTER 3

printf("Connection successful!!\n");

iResult = xcFTPClass.SYST();
printf("SYST Response= %d", iResult);

iResult = xcFTPClass.QUIT();
printf("Quit Response= %d", iResult);

II Close the connection
xcFTPClass.Close();

return O;

Listing 3·2 Minimal socket example using a network class

You will find out more about the FTP class later, but for now notice that the
example is far less complicated than the C example. What you do not see, of
course, is the underlying code buried in the NETCLASS library, but that is really
the way you would like to develop an FTP program. Notice in the C++ example
that all mention of sockets has been eliminated-once you have created a base net
work class, and perhaps an application protocol class, you can isolate your pro
gram completely from the TCP/IP APL

The C++ example is very straightforward. The program creates an instance
of an FfP connection class, opens it, issues the SYST and QUIT commands, and
finally closes the connection. Even if you know nothing about FTP or TCP/IP, you
should at least be able to read this code and acquire some appreciation for what it
does. The same cannot be said of the C example shown previously.

Chapter Summary

In this chapter, we have examined some of the basic principles that make TCP/IP
work, including the typical topology of the Internet and, more importantly, how
the Internet arrives at your desktop. There is a lot of work going on behind the
scenes in TCP/IP, much of which is beyond the scope of this book; if you want to
delve deeper I encourage you to consult other, more detailed, resources.

I have also demonstrated a typical TCP/IP program written in C and a
much higher level program that uses the NETCLASS C++ class library, which will
be developed later in this book. As you will find out later, the goal of NETCLASS
is to hide as much of TCP/IP from you as possible so you can do what interests you
most-writing network applications.

CHAPTER SUMMARY 51

In this chapter

.I Understanding the 111 o second rule

./ Multithread programming in OS/2

./ Object windows in muhithreaded programs

Considerations for System Performance

The 1/10 Second Rule

In Chapter l, we discussed OS/2' s inability to process ~ore than one mess~ge
from the system queue at any given time. This has the obvious effect o~ degra~g
overall system performance if one message processor grabs the CPUs attention
for an extended period of time.

Mouse events

1 message
at a time

System
Queue

Keyboard events

Application queues

Figure 4-1 Presentation Manager queue flow

52

Other events

Since only one message can be pulled out of the system queue at a time, all
of PM waits until that message is completely processed before PM retrieves the
next one. The designers of Presentation Manager have decided, with thorough
testing, that in order to maintain satisfactory system flow, the processing for any
individual message should not use more than 0.1 seconds. This rule of thumb is
known as the 1/1.o second rule.

Note that the 1/1.o second rule is a general guideline; there are times when
you may need to break this rule, but at all times you should be aware of the impli
cations and try to avoid doing this. So how do you know when the rule gets bro
ken? I will show you later, when we develop a class to perform some debugging
for us. Briefly, you can print a time stamp at the beginning of a message processor
and again at the end and compare them. With the debugging class I will present
later, you will not get a totally accurate measurement because the debug code also
requires some CPU time; however, you will get a clear indication of how much
CPU time you are expending to handle a given message.

There are a number of methods to avoid bogging the CPU down during
message processing. The obvious solution is to use additional threads, since
threads do not rely on the application's message queue. The message processor
need only spin off a new thread with the appropriate data and terminate, resulting
in almost no CPU usage for the message. Avoid going over-board on thread use,
however, since too many threads can be almost as bad as too few.

A second method to prevent breaking of the 1!1.o second rule is to create an
object window, which is a window that has no visual existence. I will talk about
object windows shortly; for the present, let's conduct a more detailed investigation
of threading.

Multithreading

OS/2 was one the first microcomputer operating systems to provide multiple
threads of execution. Multithreading offers a solution for improving the usage of
the CPU resources of a system. If you realize that most of the time your CPU is sit
ting idle while other hardware items in your computer try to catch up (disk drives
are particularly slow), you will have better appreciation for what threads do.

What is a thread? IBM defines a thread as the dispatchable unit of OS/2-a
rather vague definition. Every program has at least one thread of execution, which
starts at main() (in C or C ++) and lives until the program is terminated. 05/2, how
ever, can manage many threads per application.

For instance, if you were writing a word processor which provided a spell
ing checker, you could have two threads of execution-the main word processor
thread and a second spell-checker thread. This would permit the user to start
checking spelling while continuing to edit the document text. The spell-checker
thread could continue in the background until the check was complete, without
requiring further user intervention unless a spelling error was detected.

MUL TITHREADING 53

54

A more practical example, as you will see later, is a thread in your program

to perform a time-intensive task like loading a list of news articles into a container

control. Containers are notoriously lazy, and if you need to load more than 20 or

more items into one, you will definitely need a separate thread. Similarly, you will

want to use a thread to read the data from the container and save it to a disk file in

order to preserve any changes to the data.

Main
thread

Thread1 - Load a container

End
~ Ir' Thread2 - Save changes

to container data

Figure 4·2 Multiple thread flow in an application

Let's look at a simple multithreaded program (see Listing 4-1). This pro

gram does not do very much, but it does demonstrate the power of multithread

ing. The main() routine of the program first creates two threads and waits for them

to complete. If you've never seen a multithreaded program before, this could look

a little strange.

#define INCL DOS

#include <os2.h>
#include <stdio.h>
#include <process.h>

void _Optlink Thread!(void *pvData)
{

int iCtr;

II Loop 5 times printing the count
for(iCtr = O; iCtr < 10; iCtr++)
{

printf("Threadl:%d\n", iCtr);

II Sleep for 10 msec
DosSleep(10);

SYSTEM PERFORMANCE I CHAPTER 4

void _Optlink Thread2(void *pvData)
{

int iCtr;

II Loop 5 times printing the count
for(iCtr = O; iCtr < 10; iCtr++)
{

printf("Thread2:%d\n", iCtr };

II Sleep for 5 msec
DosSleep(5):

void main(void)
{

PIO
PIO

ThreadlPid;
Thread2Pid;

printf("Thread demo started\n") ;

II Start a couple of threads
#ifdef BORLANDC

ThreadlPid = _beginthread(Thread!, 10000, o);
Thread2Pid = _beginthread(Thread2, 10000, o);

#else
ThreadlPid = _beginthread(Thread!, 0, 10000, o);
Thread2Pid = _beginthread(Thread2, O, 10000, o };

#endif

II Don't exit until the threads have completed
printf("Waiting for threads to complete\n");
DosWaitThread(&ThreadlPid, DCWW WAIT);
DosWaitThread(&Thread2Pid, DCWW=WAIT);

II See ya!
printf("Thread demo completed\n" };

Listing 4·1 Simple multithreading example

. ~e main() function calls _beginthread() twice, specifying a different thread
function m each case. The thread functions (Threadl and Thread2) are essentially

separate programs buried within the same EXE, and run completely indepen
dently of each other.

. Once ,?1e z_nain :outine st~r~s these threads, it calls the DosWaitThread() API
which says, Wait until the specified thread is done before continuing." What this

MUL TITHREADING 55

56

means is that the main thread of the program is put on hold until its children are
done. If the program did not make the calls to DosWaitThread(), the program
would exit immediately and the threads would likely never get executed.

Each thread function consists of a loop that prints its value and then
"sleeps" for a specified number of microseconds. The DosSleepO. call is not
required, but it has been added to create the desired output; otherwise, the pro
gram would run so quickly that the threads might actually produce output sug
gesting that they were run sequentially. What do you expect the output to be? .

OS/2 provides a function called DosI<illThread(), but you would be wise
not to use it since it can leave the threads of your program in an unstable state and
may also leave dynamic thread memory allocated when the thread is killed.

Thread demo started
Waiting for threads to complete
Threadl:O
Thread2:0
Thread2:1
Threadl:l
Thread1:2
Thread2:2
Thread2:3
Thread1:3
Thread1:4
Thread2:4
Thread1:5
Thread2:5
Thread1:6
Thread2:6
Thread1:7
Thread2:7
Thread1:8
Thread2:8
Thread1:9
Thread2:9
Thread demo completed

As you can see from the printed output, the main routine starts the threads
and waits for both of them to complete. The threads then begin executing to pro
duce the output one would expect. However, if yo~ were to i:in this program sev
eral times, the output might vary slightly depending on which thread ~ot to th~
printf() routine first. The printf() module is a reer:itrant function, meaning that it
can be called by one thread even if it is already being executed by another thread.
The second call to printf() gets placed in the queue and waits until the first thread
releases the semaphore associated with printf().

Semaphores are typically present in any multitasking operating system,
and are really nothing but flags managed by the operating system. Don't let the

SYSTEM PERFORMANCE I CHAPTER 4

fancy name deter you from understanding and using semaphores. In fact, there
will be times in your own code when you will have to use a semaphore to ensure
that multiple threads do not attempt to use the same resource at the same time.

The example shown in Listing 4-1 represents a text mode application with
threads; however, as you will see in Part III of this book, threads work equally well
with PM applications. There are a few other details involved, but essentially start
ing threads in a PM program is identical.

Using Object Windows

There is a second method by which to multithread in PM applications, though the
documentation for it lacks some depth. Consequently you may never have heard
of this technique before. This second mechanism uses a Presentation Manager ele
ment called an object window.

Object windows are windows that have no physical component-that is to
say, they cannot be displayed. You may wonder what possible use this window
could have, or why it is even called a "window." In fact, object windows can be
invaluable, particularly if you are porting applications from Microsoft Windows.

I mentioned the limitations of the message queues associated with PM and
the 111.o second rule in particular. In reality, these limitations apply only to normal
windows (i.e., those with a visible component); no time limitations apply to object
windows at all. This means that the message processing for any particular mes
sage in an object window can take as long as necessary to complete a task without
tying up the system message queue.

Of course, there are some disadvantages to using object windows, which
are probably not obvious to you immediately. First, you still need to create a thread
to manage the object window. Second, adding an object window complicates the
design of even a simple application because you now need to manage messages
~om two windows rather than just one; further, you need to create a message
interface between your application window and the object window such that they
can exchange messages. Finally, you will require some technique to pass shared
data between the application window and object window, which implies some
form of global data area.

. Listing 4-2 shows the C source file for a simple program that uses an object
window to manage a very long delay and tone sequence, without affecting the
performance of the entire system.

//-------------
//Definitions \
1/--
#define INCL DOS
#define INCL-WIN

USING OBJECT WINDOWS 57

11---------------
11 Include Files \
11--
#include <os2.h>

#include <stdio.h>
#include <stdlib.h>
#include <process.h>

#include "objwin.h"

void _Optlink ThreadObject(void *pvData)
{

HAB
HMQ
QMSG
T SHARE

hABThread;
hMQThread;
qmsg;
*pxtWnd;

II Create a PM process for this thread
hABThread = Winlnitialize(0);
hMQThread = WinCreateMsgQueue(hABThread, 0);

pxtWnd = (T_SHARE *)pvData;

II Register our object window class with the operating system
WinRegisterClass(hABThread, "TestObjWindow", (PFNWP)ObjWndProc,

0, sizeof(T_SHARE *));

II Create an instance of the object window
pxtWnd->hWndObj = WinCreateWindow(HWND OBJECT, "TestObjWindow", "",

0, 0, 0, 0, 0, HWND_OBJECT, HWND_BOTTOM, 0, pxtWnd, NULL);

II Start the message loop to monitor the system queue for any messages
II that belong to this app.
while(WinGetMsg(hABThread, &qmsg, OL, 0, 0))
{

II Found a message belonging to us, so dispatch it to our window
II procedure
WinDispatchMsg(hABThread, &qmsg);

II Tell the client window to quit
WinPostMsg(pxtWnd->hWnd, WM_QUIT, 0, 0) ;

WinDestroyWindow(pxtWnd->hWndObj);

WinDestroyMsgQueue(hMQThread);

SYSTEM PERFORMANCE I CHAPTER 4

MRESULT EXPENTRY ObjWndProc(HWND hWnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{

HPS
RECTL

hps;
re;
*pxtWnd; T SHARE

switch(msg)
{

case WM CREATE:
II Save a point to the global data in the object window data
II area
WinSetWindowULong(hWnd, QWL_USER, (ULONG)mpl);
break;

case WM SLEEP:
DosSleep(1000);
DosBeep(100, 100);
DosSleep(1000);
DosBeep(300, 100);
DosBeep(50, 100);
break;

case WM CLOSE:
WinPostMsg(hWnd, WM_QUIT, 0, 0);
break;

default:
return WinDefWindowProc(hWnd, msg, mpl, mp2);

return (MRESULT)FALSE;

11---------
11 WndProc \

11--
MRESULT EXPENTRY WndProc(HWND hWnd, ULONG msg, MPARAM mpl, MPARAM mp2)
{

HPS
RECTL
T SHARE

hps;
re;
*pxtWnd;

switch(msg)
{

case WM CREATE:
pxtWnd = (T_SHARE *)malloc(sizeof(T_SHARE));
WinSetWindowULong(hWnd, QWL_USER, (ULONG)pxtWnd);
pxtWnd->hWndFrame = WinQueryWindow(QW PARENT, hWnd);
pxtWnd->hWnd = hWnd; -

USING OBJECT WINDOWS 59

60

pxtWnd->hWndObj = NULLHANDLE;

#ifdef BORLANDC~
_beginthread(ThreadObject, 40000, pxtWnd);

#else
_beginthread(ThreadObject, 0, 40000, pxtWnd);

#endif
break;

case WM COMMAND:
pxtWnd = (T_SHARE *)WinQueryWindowULong(hWnd, QWL_USER);
switch(COMMANDMSG(&msg)->cmd)
{

case DM DO SLEEP:

break;

WinPostMsg(pxtWnd->hWndObj, WM_SLEEP, 0, 0);
break;

case WM_PAINT:ll Process paint messages
II Get a handle to our presentation space
hps = WinBeginPaint(hWnd, OL, &re);

II Fill our client rectangle with some neutral color
WinFillRect(hps, &re, SYSCLR_APPWORKSPACE);
GpiSetColor(hps, CLR_NEUTRAL);

II Tell PM that we are finished painting
WinEndPaint(hps);
break;

default: II Let PM process anything that we don't do here
return WinDefWindowProc(hWnd, msg, mpl, mp2);

II Tell PM that we took care of the message we care about
return (MRESULT)FALSE;

int main(void)
{

HAB hAB;
HMQ hmq;
HWND hWnd;
HWND hWndFrame;
QMSG qmsg;
ULONG fl Create;

II Initialize the PM interface for our application

SYSTEM PERFORMANCE I CHAPTER 4

hAB = Wininitialize(O);

II Create a message queue for this app.
hmq = WinCreateMsgQueue(hAB, 0);

II Register our window class with the operating system
WinRegisterClass(hAB, (PSZ)D_APPNAME, (PFNWP)WndProc,

CS_SIZEREDRAW, sizeof(T_SHARE *));

II Create an instance of our application window on the desktop
flCreate = FCF_STANDARD;
hWndFrame = WinCreateStdWindow(HWND DESKTOP, WS VISIBLE,

&flCreate, (PSZ)D_APPNAME, (PSZ)"ObjectWindow PM Program",
0, NULLHANDLE, D_ID_WINDOW, &hWnd);

II Start the message loop to monitor the system queue for any messages
II that belong to this app.
while(WinGetMsg(hAB, &qmsg, OL, 0, 0))
{

II Found a message belonging to us, so dispatch it to our window
II procedure
WinDispatchMsg(hAB, &qmsg);

II The user closed our app window, so destroy the window
WinDestroyWindow(hWndFrame);

II Disconnect from the system message queue
WinDestroyMsgQueue(hmq);

II Deinitialize the PM interface
WinTerminate(hAB);

II Return to the operating system
return O;

Listing 4-2 PM example using object windows

The main() procedure is almost identical to the minimal PM application
presented earlier. It registers a window class and creates an instance of the new
window. The application window procedure WndProc() is a little different.

case WM CREATE:
pxtWnd = (T SHARE *)malloc(sizeof(T SHARE));
WinSetWindowULong(hWnd, QWL USER, (ULONG)pxtWnd);
pxtWnd->hWndFrame = WinQueryWindow(QW_PARENT, hWnd);
pxtWnd->hWnd = hWnd;

USING OBJECT WINDOWS 61

62

pxtWnd->hWndObj = NULLHANDLE;

#ifdef BORLANDC
_beginthread(ThreadObject, 40000, pxtWnd);

#else
_beginthread(ThreadObject, 0, 40000, pxtWnd);

#end if
break;

This code allocates some global memory space for the data to be shared
between the application window and the object window. Then it starts a second
thread to create and control the object window.

The ThreadObject() code appears similar to the main() routine. It initializes
the required parts of PM, creates an object window, then starts a message loop.

II Register our object window class with the operating system
Wi nRegi sterCl ass (hABThread, 11 TestObjWi ndow 11

, (PFNWP)ObjWndProc,
0, sizeof(T_SHARE *));

II Create an instance of the object window
pxtWnd->hWndObj = Wi nCreateWi ndow (HWND _OBJECT, 11 TestObjWi ndow 11

,
1111

,

0, 0, 0, 0, 0, HWND_OBJECT, HWND_BOTTOM, 0, pxtWnd, NULL);

The creation of the object window differs only slightly from a normal dis
play window. Instead of telling PM that the window belongs to the desktop
(HWND_DESKTOP), we create it as a child of HWD_OBJECT. This informs PM
that the new window gets managed as an object window.

That is the only difference between an object window and a visible applica
tion window. Both types have a window procedure, and because the program allo
cates some shared memory and stores the handles to each window, the two
window types can communicate with each other by sending messages.

In the situation in the example, where the user invokes the SLEEP menu
option, the main window procedure sends a message to the object window telling
it do its processing for the WM_SLEEP message.

case DM DO SLEEP:
WinPostMsg(pxtWnd->hWndObj, WM_SLEEP, 0, 0);
break;

In the object window code WM_SLEEP does the following:

case WM SLEEP:
DosSleep(1000);
DosBeep(100, 100);
DosSleep(1000);
DosBeep(300, 100);
DosBeep(50, 100);
break;

SYSTEM PERFORMANCE I CHAPTER 4

The process sleeps for one second, beeps, then sleeps for another second
and beeps again. If you were to implement this same message in your application
window (try it), you would see that it ties up the whole PM interface for every run
ning process, including the desktop. However, because the long delay is imple
mented in an object window where the 1/to second rule does not apply, no system
degradation occurs.

This is a pretty simple example. In a real application, the main window
would possibly be performing other processing while the long process is running.
Once complete, the long process would typically send a message back to the appli
cation window to notify it, at which point some additional processing might be
triggered.

Chapter Summary

In this chapter we have discussed the features and pitfalls of working in a multi
threaded operating system like OS/2. Though I did not mention all the problems
that multithreading can cause, you did see some restrictions imposed by the l1to
second rule. We looked at two different methods by which you can write multi
threaded PM applications. These were a simple thread creation and the powerful
object window support in PM. We will make use of multithreading in the applica
tions we will build in Part III of this book in order to improve the performance of
our applications.

This concludes Part I of the book. By now you should have a better under
standing of TCP/IP, OS/2, and Presentation Manager. We will start applying this
knowledge in the next part as we begin to create the user interface and networking
class libraries that will be used as a foundation for the applications later in the
book.

CHAPTER SUMMARY 63

Building Class Libraries

In Part II of this book, you will start to develop a library of C++ classes used to
simplify the user interface and the network interface.

65

,

I

J

./ Using classes to build better applications

./ Importance of code portability

./ Non-visual programming in PM

Why Build a Class Library?

Developing a Class Library
for Nonvisual Objects

If you have not had much experience in C++ or other object-oriented program

ming language, the first question you are probably asking yourself is, "What is a

class library?" A class library is a group of classes that have a hierarchical depen

dency on one another. For instance, in C++, you could define a "window" class as

a general object type. You might then determine that there are several types of win

dow objects (e.g., application windows, child windows, dialog boxes, and even

buttons). If you were to build these classes with C code, you would likely recode

large portions of the basic window functionality for each type of window. Devel

oping a C++ class library offers the following advantages.

Code Reuse

Code reuse is one of the key advantages of C ++ over non object-oriented

languages like C. In our object-oriented user interface class library, we will

code as much of the common window characteristics in the "window" class

as we possibly can. We can then inherit these attributes and methods in all

of the derived classes of this parent. Since an application window will be

derived from the basic window class, it will already know how to act like a

window because it will reuse all the intelligence previously coded in the

parent. All that remains is to recreate some additional code to distinguish

an application window from any other type. This extra code will include

functionality like how to attach a menu or a title bar.

67

68

Ease of Use
I alluded to this in the previous point, but as a side effect of code reuse you
will also realize a significant increase in productivity. Because each newly
derived class adds an increasing amount of knowledge, coding with
higher-level objects actually increases the number of lines of code you can
write. We have all heard about the proverbial three lines-per-day program
ming metric-well, this applies whether you are writing three lines of
assembly language or three lines of code using some very high-level lan
guage. Ease of use will also become apparent as you begin to debug the pro
grams you write. If, for instance, you find a bug in the Window base class,
you can fix the error and, almost magically, every class derived from this
base class will be corrected as well.

Portability
I have been skirting the whole issue of portability, only briefly mentioning
it in a previous chapter, but portability is becoming increasingly important
to developers who want to offer their wares on several platforms. Properly
designed C++ classes can render a porting exercise trivial, and the class
libraries in this book have been designed with portability in mind. I have
devoted the next section in this chapter to this concept of writing portable
code, since it has become such a hot topic in recent years.

The Question of Portability

The most obvious reason for making programs portable is to permit creation of sim
ilar applications on more than one platform with a minimum of effort. However,
there are a few more subtle but equally important reasons to write portable code.

The first benefit you will realize is saved time--not because you have no
need to recode, but rather because you can eliminate the often significant learning
curve associated with a new API and operating system. If you create a standard
portable class library and learn it well, you have already cleared the largest hurdle
in your porting exercise.

The second advantage portability offers is simplified configuration man
agement. This means that you need to manage only a single set of documents and
source code. If you change the code for one platform, a quick recompile adds the
change to any other platform to which your code is portable.

With Windows, OS/2, and UNIX X proliferating in the marketplace, it
makes economic sense to invest a little extra time to build solid, portable class
libraries. This is not as big a challenge as you might first think.

How is portable code created? The simplest method is to use an object
oriented programming language like C++ and create a set of class libraries. If you
are successful at creating a complete set of classes and use these classes throughout
your code, the application itself will be portable. The class libraries, which would

NONVISUAL OBJECTS CLASS LIBRARY I CHAPTER 5

typically represent a smaller portion of your application code, would need to be
rewritten, however, once this coding is complete; any applications you develop
can be transferred to the new platform simply by recompiling. All it takes is a little
common sense when building your classes.

Although porting classes is beyond the scope of this book, I have gone to
great lengths to ensure that the classes should be easily transferable to the Window
95 or NT platform. My efforts disintegrate somewhat in the CUA 91 controls, such
as containers, because there is no direct mapping to any window classes on the
Windows platform. Windows provides a child window class called a view-actu
ally, Microsoft created several different types of view windows that are similar to
the views of a PM container control. With a little additional persistence, you can
create a suitable class on the Windows platform to mimic the PMCLASS
C_CONTAINER object that will be defined in the next chapter.

All of the programs in Part III of this book are written using the class librar
ies developed in the next few chapters. You will discover that there is little, if any,
specific code for OS/2 or PM. Although I will not be creating a Windows version
of the class libraries, you are welcome to, and you can rest assured that the appli
cations should recompile under Windows with minimal effort on your part.

One final point to note about portability: Do not make objects so tight that
you prevent the use of native API calls. There are times when portability takes a
back seat to getting the job done, so you want to avoid locking yourself out of the
native operating system. Occasionally, a few lines of native API calls can save
hours of work attempting to create portable classes to perform similar tasks. This
points ~ut a definite problem with many commercial class libraries. If you have
ever wntten a program with Borland's Object Windows Library (OWL) or IBM's
ICLUI class library, then you already know that embedding native API calls can be
tedious or impossible. Regardless of how portable you want to make your classes,
do not fall into this trap or you will discover that your library is not very functional
on any platform.

The NVCLASS Class Library

~e NVCLASS library is a collection of classes required for some nonvisual oper
ations. These classes do not display output in windows or text screens; rather, they
act as the essential glue to assist in connecting the DOS-level API into your pro
grams in a portable way.

The classes are, for the most part, wrappers around existing nonportable
o~eratin~ system functionality for which OS/2 currently provides a non-object
onented mt~rface. In order to make these non-visual portions of the operating sys
tem mesh with the visual classes we will build in the next chapter, I have created a
class library for them.

The following diagram illustrates the object hierarchy for the NVCLASS
class library:

THE NVCLASS CLASS LIBRARY 69

70

I
C_THREAD C_INI C_SEM_EVENT

I
I

C_INI_USER C_THREAD_PM

C_INI_SYSTEM

Figure 5·1 NVCLASS class hierarchy

The nonvisual class library is small-only six objects. As you develop code
of your own, you may want to expand on this. Now let's make a more detailed
investigation of these objects.

The C_INI Class

There will be times when you need to store data from a program in a persistent
area of the operating system. 0512 provides an interface to create INl files, which
you may have noticed in your 0512 system directory. The operating system makes
extensive use of 052.INI and 0525Y5.INI to store and maintain virtually every
configuration setting for itself and its support programs. You can create your own
INI files, if you wish, you may use 052.INI. The C_INI class is the simplest class
created in this book, so it is a good place to start looking at class libraries.

The following figure illustrates the C_INI class:

C_INI

char sziniFile[256] C_INIO
char szAppName[256] void Open()
HINI hini void Close()

void Read()

void Write()

Figure 5·2 C_INI class

The header file for C_INI is shown in Listing 5-1:

NONVISUAL OBJECTS CLASS LIBRARY I CHAPTER 5

class C INI
{

};

protected:
char szlni Fil e[256];
char szAppName[256];
HINI hlni;

public:

II Filename of INI file
II Application name of program
II INI handle

Export C INI(char *szFile, char *szAppName);
void Export Open(void);
void -Export Close(void);
void -Export Read(char *szField, char *szData,

- char *szDefault, int ilength);
void _Export Write(char *szField, char *szData);

Listing 5·1 INl.HPP - Class definition for C_INI

The C_INI class implements just one constructor. The constructor for the
class is very straightforward, consisting of two calls-one to copy the input strings
for the INI filename and another to copy the identifying string, which is usually
the program name.

11-------------
11 Constructor\
11---
11
II Parameters:
11 szFil e
II
II

szName

II Returns:
II
II

- Full path name of INI file
- Name of application

none

C_INI::C_INI(char *szFile, char *szName)
{

II Save the supplied data within the class attributes
strcpy(szlniFile, szFile);
strcpy(szAppName, szName);

Once an instance of C_INI has been created, the INI file needs to be opened.
The class provides an Open() method to accomplish this. The method calls the
OSl2 API PrfOpenProfile() to open the INI file and saves the INI file handle within
the hlni class attribute.

THE C_INI CLASS 71

72

11------
11 Open \
11---
11 Description:
II This method will open the INI File associated with this instance.
II
I I Parameters:
II none
II
11 Returns:
II none
II
void C_INI::Open(void)
{

II Open the INI file saving the handle to the file
hlni = PrfOpenProfile(0, (PSZ)sziniFile);

The Close() method complements Open(), and should be called once INI
reading and writing is complete. The method calls the 0512 API PrfCloseProfile().

11-------
11 Close\
11---
11 Description:
II This method will close the INI File associated with this instance.
II
11 Parameters:
II none
II
void C_INI::Close(void)
{

if(strlen(sziniFile)
{

II Close the INI file
PrfCloseProfile(hlni);

Once the INI file has been open, data can be read or written. Although OSl2
supports a complete set of reading and writing capabilities for strings, integers,
and decimal values, the NVCLASS implements only string support. If you have a
requirement to store numbers, you have the option of adding your own method to
support this capability or, alternately, you may convert the number into string
using the provisions of CIC++ string support.

In order to read a value from the INI file, we need to know a number of spe
cific bits of information. Each item in the INI file is stored by referencing a key

NONVISUAL OBJECTS CLASS LIBRARY I CHAPTER 5

value, and this key must be supplied to Read() in order to retrieve the information
successfully. Additionally, the Read() method requires a buffer area, where the
data read from the INI file will be deposited, and also a default value for the buffer
in the event that no data is stored for the supplied key. Finally, Read() needs to
know the size of the buffer area.

11------
11 Read \
11---
11 Description:
II This method will read a string from the INI file as specified by
II the supplied keyword. If the value is not extracted from the INI
II file, then the supplied default will be returned.

II
I I Parameters:
II szField
II
II
II
II

szData
szDefault
ilength

11 Returns:
II
II

none

- Keyword to be fetched
- Pointer to buffer where data from INI will be written
- Pointer to the default string
- Maximum size of the output buffer

void C_INI::Read(char *szField, char *szData, char *szDefault, int ilength)
{

II Query the INI file for a string
PrfQueryProfileString(hlni, (PSZ)szAppName, (PSZ)szField,

(PSZ)szDefault, (PSZ)szData, ilength);

The Write() method is a little simpler, requiring only the necessary key and
the data that will be written.

11-------
11 Write \
11---
11 Description:
II This method will write a string to the INI file as specified by
II the supplied parameters.
II
11 Parameters:
11 szFi el d - Keyword to be fetched
II szData - Pointer to buffer where data from INI will be written
II
II Returns:
II none
II

THE C_INI CLASS 73

74

void C_INI::Write(char *szField, char *szData)
{

II Write the supplied string to the IN! file
PrfWriteProfileString(hlni, (PSZ)szAppName, (PSZ)szField, (PSZ)szData);

This short programming example illustrates the use of the C_INI class:

void LoadlniData(void)
{

char szString[256];

II Create an instance of the class
C_INI xclni("TEST.IN!", "TestProgram");

II Open the IN! file
xclni .Open();

II Write a test string
xclni.Write("TestKey", "This is a test");

II Now read it back
xclni .Read{ "TestKey", szString, "Invalid", 256) ;
printf("Read:%s\n", szString) ;

II All done
xclni .Close();

Listing 5·2 Sample use of C_INI

The C_INl_USER Class

OS/2 provides two specific INI files designed to maintain the operating system
itself as well as any other application that needs to track persistent information.
The first of these is 052.INI; NVCLASS provides a C_INI class to support it.

This class is shown in Figure 5-3.

C_INI_USER

C_INI_ USER()

void Open()

Figure 5·3 C_INl_USER class

NONVISUAL OBJECTS CLASS LIBRARY I CHAPTER 5

C_INI_USER builds on the previous C_INI class by predefining the INI file
handle. Under normal OS/2 API code the 052.INI file can be accessed by referenc
ing the HINI_USERPROFILE handle. Since this handle is never supposed to be
opened or closed, this creates a big inconsistency in the way 05/2 manages these
files when compared to other INI files. NVCLASS alleviates these problems by
providing an Open/Close scenario, as it does for any other C_INI instance.

The header file for C_INI_USER is shown in Listing 5-3:

class C_INI_USER : public C_INI
{

public:
_Export C_INI_USER(char *szAppName);
void _Export Open(void);

#ifdef BORLANDC
virtual void _Export Close(void) {};

#else
virtual void

#endif
};

Close(void) {};

Listing 5·3 INIUSER.HPP ·Class definition for C_INl_USER

The C_INI_USER class has no attributes and just two methods. The con
structor simply calls its parent but does not provide an INI filename; instead, it
supplies a null string.

11-------------
11 Constructor \

11---
11
11 Parameters:
II szFile
II
II

szName

11 Returns:
II none
II

- Full path name of IN! file
- Name of application

C !NI USER::C INI_USER(char *szName) C_INI('"', szName)
{
}

The 052.INI file should never be acted on by an API PrfOpenProfile() call.
For this reason C_INI_USER needs to implement a special Open() method that
overrides the previous definition created by the C_INI parent. The new Open()
simply defaults the hini attribute of the parent to HINI_USERPROFILE.

THE C_INl_USER CLASS 75

76

11------
11 Open \ -------------------11--
I I Description: II This method will open the OS2USER.INI File associated with this
11 instance.
II
11 Parameters:
II none
II
11 Returns:
II none
II
void C_INI_USER::Open{ void)
{

II we don't need to open the OS2USER.INI file, we can just use it
hlni = HINI_USERPROFILE;

The C_INl_SYSTEM Class

The other special INI file is OS2SYS.INI. Generally this file will never be written to,
since is supposed to be reserved for use by the o~erating sys.te~. However, you
may need to write to, or, more likely, read information from this file, so NVCLASS
provides a C_INI_SYSTEM class. .

This class is virtually identical to the prevtous C_INI_US~R class, exce~t
that it manipulates a different file. For this reason we need not go mto great detail
here. Figure 5-4 shows the class graphically.

C_INI_SYSTEM

C_INI_SYSTEM()
void Open()

Figure 5·4 C_INl_SYSTEM class

The header file for C_INl_SYSTEM is shown in Listing 5-4:

class C_INI_SYSTEM : public C_INI
{

public:
Export C_INI_SYSTEM{ char *szAppName);

~aid _Export Open{ void);
#ifdef BORLANDC~

virtual void _Export Close{ void) {};

NONVISUAL OBJECTS CLASS LIBRARY I CHAPTER 5

#else
virtual void

#end if
} ;

Close{ void) {};

Listing 5·4 INISYS.HPP- Class definition for C_INl_SYSTEM

The basic difference in this class is the replacement of the HINI_USER
PROFILE handle with HINI_SYSTEMPROFILE. This occurs in the Open() method
as shown below.

11------
11 Open \
11---11 Description:
II This method will open the OS2.INI File associated with this instance.
II
11 Parameters:
II none
II
II Returns:
II none
II
void C_INI_SYSTEM::Open{ void)
{

II We don't need to open the OS2.INI file, we can just use it
hlni = HINI_SYSTEMPROFILE;

The C_THREAD Class

We discussed multithreading and OS/2 several times in the previous chapter. Like
other APis in OS/2, the calls for threading are C-based rather than C++ -based, so
we need to create an object to wrap this functionality to make it easier to use in our
own applications.

The C_THREAD class implements a simple class wrapper to support this,
by providing a limited interface to create and monitor threads; like every other
class I will create in this book, there is room for expansion. For instance, I have
defined only a single monitoring function, Waitlndefinite(). OS/2 also supports
checking a thread's status based on a timed wait or no wait at all. If this function
ality is important to you, you can add two more methods to create this interface.

The following object diagram illustrates the methods and attributes that
combine to form the thread class:

THE C_THREAD CLASS 77

78

C THREAD

void "pvThreadData C_1HREAD()

TID hThreadID void Create()

void Kill()

void Waitindefinite()

void" Thread Data()

Figure 5·5 C_THREAD class

The header file for C_THREAD is shown in Listing 5-5:

class C THREAD
{

private:
void
TIO

*pvThreadData;
hThreadID;

public:
_Export
_Export

C THREAD(void);
C-THREAD(void {*ThreadFunction)(void *),
- unsigned int iStackSize, void *pvData);

II lnline methods
#ifdef BORLANDC~

void * _Export ThreadData(void return pvThreadData; };
#else

void * ThreadData(void)
#end if

return pvThreadData; };

II Regular methods
void _Export Create(void *ThreadFunction,

unsigned int iStackSize, void *pvData);
Kill(void) ;
Waitlndefinite(void);

void _Export
void _Export

};

Listing 5·5 THREAD.HPP- Class definition for C_THREAD

The C_THREAD class implements two constructor interfaces. The first is a
simple void constructor that does not create a thread, but rather notes only that the
C_THREAD object has been created. The second constructor can be thought of as
the "on the fly" version; it creates an instance of the C_THREAD class but also cre
ates the actual thread itself by calling the create method.

Threads are essentially separate programs running from the operating sys
tem, and, as such, they require a specified amount of stack space in order to

NONVISUAL OBJECTS CLASS LIBRARY I CHAPTER 5

execute without error. You could calculate this value, but is isn't really necessa .
In most of the thread examples in this book I have arbitrarily selected a stack s~
that ';orks-there's no real pen~lty for assigning a larger stack than required, since
OS/2 s memory management will ensure that no memory space is wasted.

11-------------
11 Constructor \
11---c_THREAD::C_THREAD(void)
{

hThreadlD = O;

11-------------
11 Constructor \
11---11
11 Parameters:
II ThreadFunction
II StackSize
II
II

pvData

- Pointer to the desired thread function
- Default stack size for the thread
- Pointer to any data passed to the thread function

C_THREAD::C_THREAD(void *ThreadFunction), unsigned int iStackSize,
void *pvData

II Call the create method to create a thread upon instantiation
Create(ThreadFunction, iStackSize, pvData);

The Create() method wraps the operating system call that starts a new
thread. It requires a pointer to a thread function, an initial stack size for the thread,
and a pointer to any data that might be supplied to the thread from the caller. In
addition to this data, a thread has access to any global memory and system
resources that have been allocated by the host application.

11--------
11 Create \
11---11 Description:
II This method wraps the operating system dependent call to create a
II new thread of execution.
II
II Parameters:
II ThreadFunction
II StackSize
II
II

pvData

THE C_THREAD CLASS

- Pointer to the desired thread function
- Default stack size for the thread
- Pointer to any data passed to the thread function

79

80

11 Returns:
11 none
II t· void C_THR£AD::Create{ void *ThreadFunc ion.

unsigned int iStackSize,
void *pvData)

II Save a pointer to the supplied data
pvThreadData = pvData;

II Create a new thread of execution
#ifdef BORLANDC t" iStackSize, this); hThreadlD = _beginthread{ (void (*)(void *))ThreadFunc ion,

#else (void (* _LNK_CONV){ void *)_)Thread_Func.tion, hThreadlD = _beginthread(o, iStackS1ze, this),

#endif
}

al d way to kill it in some cir-Once a thread has been created, we so ~ee a ifi call DosI<ill-
cumstances. The Kill() method wraps the operating system spec c

Thread() to accomplish this. f th C THREAD··I<ill() method is not recom-Like DosKillThread(), use o e - thread
mended, since it can cause improper memory deallocation ma .

11------
11 Kill \ --11---------------------------------
II Description: d d t call to terminate II This method wraps the operating system epen en
II a thread.
II
11 Parameters:
II
II

none

11 Returns:
II none

11 < . d void c_THR£AD::Kill vo1
{ II If the thread has previously been started

if(hThreadID)
{

II Kill the thread
DosKillThread(hThreadlD);

NONVISUAL OBJECTS CLASS LIBRARY I CHAPTER 5

The C_THREAD class implements one more method to monitor thread sta
tus. Waitlndefinite() polls for the status of the thread until the thread completes; it
consists of simple wrapper code to hide the operating-system-specific call.

1/----------------
11 Waitlndefinite \
11---11 Description:
JI This method wraps the operating-system-dependent call to wait for
II the thread to complete its execution.
II
// Parameters:
11 none
II
// Returns:
II none
II
void C_THREAD::Waitlndefinite(void)
{

//If the thread has previously been started
if(hThreadID)
{

//Wait for the thread to complete
DosWaitThread(&hThreadID, DCWW_WAIT);

I won't provide a threading example at this point because we will use
threading extensively in the applications in Part III of this book; use of the
C_THREAD class will be highlighted at that time. However, I will point out that
thread functions used by the C_THREAD class differ slightly from those of stock
OS/2. With C_THREAD thread functions, the data pointer passed into the function
always contains a pointer to the thread object, not the buffer point specified when
the thread is created. You can access this data area using an inline method Thread
Data(), provided by C_THREAD.

C_THREAD should be used for all threading in text-mode applications and
may also be used in PM applications in circumstances where no PM messages
need to be sent from within the thread. In these situations you need to use the
C_THREAD_PM class described next.

The C_THREAD_PM Class

As alluded to in the last section, threading from within Presentation Manager
applications poses some additional problems that can once again be attributed to
the single message queue problems of PM. If you want to create a thread to do

THE C_THREAD_PM CLASS 81

82

something that requires PM windows message sending, then you need to perform

a few more calls at the beginning and end of your thread function. Rather than rep

licate this code for each thread, it is much easier and more efficient to create a new

class. We can thus implement the code once and reuse it.

The C_THREAD_PM class builds on the knowledge of its parent

C_ THREAD by implementing two additional methods that need to be called from

within the thread function. These calls create and destroy a message queue the

thread needs in order to be able to send messages to PM. Without this queue, the

messages sent will be queued until the thread terminates.

Figure 5-6 illustrates the extensions added by the C_THREAD_PM object.

C_THREAD_PM

HAB hABThread C_THREAD_PM()

HMQ hMQThread void Initialize Thread()

void Terminate Thread()

Figure 5-6 C_THREAD_PM class

The header file for C_THREAD_PM is shown in Listing 5-6:

class C THREAD PM public C_THREAD

{

};

private:
HAB
HMQ

public:
_Export
_Export

void
void

hABThread;
hMQThread;

C_THREAD_PM(void);
C_THREAD_PM(void (*ThreadFunction)(void *),

_Export
_Export

unsigned int iStackSize, void *pvData);

InitializeThread(void);

TerminateThread(void);

Listing 5-6 THREADPM.HPP- Class definition for C_THREAD_PM

Like its parent, C_THREAD_PM implements two constructors, both of

which add no additional functionality to the construction process. The second of

these two constructors is shown below.

11-------------
11 Constructor \

11---

11 Description:
II This method wraps the operating system dependent call to create a

NONVISUAL OBJECTS CLASS LIBRARY I CHAPTER 5

II
II
II
II

new thread of execution for a Presentation

send PM messages, a thread in PM must ere Ma~ager. To be able to

queue. This constructor does th · ate its own message
1 s.

11 Parameters:
II ThreadFunction
II StackSize
II pvData
II
11 Returns:
11 none
II

- Pointer to the desired thread function

- De:ault stack size for the thread

- Pointer to any data passed to the thread function

C_THREAD_PM::C THREAD PM(void (*Th dF .
- -. . . rea unct1on)(void *),

unsigned int iStackSize, void *pvData)

C_THREAD(ThreadFunction, iStackSize, pvData)
{
}

The InitializeThread() method sh uld b

thread function to set up the re . d o e placed near the beginning of a PM

the PM interface for the method:~ thmessage queue. As you can see, it initializes

en creates a new message queue.

11------------------
11 InitializeThread \

11--
11 Description: ---------- --------------------

11 This method wraps the operatin s t

II a new message queue. This sh rd ~s em dependent calls to create

II the thread function ou e called at the beginning of

II .
11 Parameters:
II none
II
11 Returns:
II none
II
~oid C_THREAD_PM::InitializeThread(void)

II Create a PM process for this thread

hABThread = Winlnitialize(0)·
hMQTh d - · '

rea - W1nCreateMsgQueue(hABThread
• 0);

The complement to InitializeThread() . .

used to destroy the thread' ts the TermmateThread() method It is

t s message queue reso d .

em pool. TerminateThread() should be ll d . urce~ an return them to the sys

ca e immediately before the thread ends.

THE C_THREAD_PM CLASS
83

84

11-----------------
11 TerminateThread \

11---

11 Description:
II This method wraps the operating system dependent calls to destroy

II a thread's message queue. This should be called at the end of the

II thread function.

II
11 Parameters:
II none
II
11 Returns:
11 none
II
void C_THREAD_PM::TerminateThread(void)

{
II Terminate the thread
WinDestroyMsgQueue(hMQThread);

WinTerminate(hABThread);

At this point I should note something critical to using threads within a PM

program that may save you hours of debugging. As you probably know, the auto

matic variables defined within a window message handler method are not pre

served when the method terminates. For instance, if you are using the "new"

handler to allocate a thread dynamically in one message handler routine, do not

assume that you can use the thread pointer in another method since it will

undoubtedly be invalid-resulting in a program crash.

If, after creation of the thread, you need to access the thread pointer, you

should declare the pointer in the class definition. Alternatively, C_THREAD and

C_THREAD_PM have been designed so that a static declaration of these classes

can be used rather than dynamic allocation at run time. This simplifies use of the

thread classes, since you do not need to be concerned about deallocation.

For more details concerning correct use of the C_THREAD classes, study

the sample programs in Part Ill of this book.

The C_SEM_EVENT Class

The NVCLASS class library contains a final class called C_SEM_EVENT, which

implements event semaphores. As I mentioned previously, the term "semaphore"

is an just a fancy way of saying flag. We've all used flags in programs in order to

control execution of the program, and semaphores are really not much different.

However, in a multitasking operating system one needs to take care to avoid race

conditions where two threads might want to access a flag at the same time. The

effects can be disastrous.

NONVISUAL OBJECTS CLASS LIBRARY I CHAPTER 5

OS/2 and most other multitaskin 0
.

implementing semaphores that are fla s ~!~:~~g system_s s~lve this problem by

the system in order to avoid applicati~n nfli y an application but managed by

are used for specific purposes in 1 din co cts. A number of semaphore types

ment, and resource managem~nt c u . ? event ~anagement, resource manage

implement a class onl c requmng exclusive access. In this book I will
y .ior event semaphor . h thi '

API wrapping so that you can im es, ~':ever, s class consists only of

} ;

semaphores if you require them Thplelment additior:ial classes for other types of
. e c ass structure is as follows:

C SEM EVENT

HEV hSemaphore C_SEM_EVENT()
char szName[256J int Create()

int Open()
int Close()
int Reset()
int Post()
int Wai tlndefinite()

Figure 5-7 C_SEM_EVENT class

The header file for c SEM EVENT . h . . .
- - is s own m Listing 5-7:

class C SEM EVENT
(- -

private:
char
HEV

public:

szName [256] ;
hSemaphore;

II Semaphore name string
II Handle for an OSl2 semaphore

_Export C_SEM_EVENT(char *szSemaphoreName)·

7 Export C_SEM_EVENT(void); '

int _Export Create(void);

int _Export Open(void);

int _Export Close(void);
int E t - xpor Reset(ULONG *plPostCount)·
int _Export Post(void); '

int Ex t - por Waitlndefinite(void);

Listing 5.7 SEMEV.HPP - Class definition for C_SEM_EVENT

C_SEM_EVENT supplies tw
tionality and is supplied to creat o constructors. The first implements no func-

th . . e an unnamed semaphore Th d
e specification of a name strin · e secon requires

g parameter used to create a named semaphore .

•
THE C_SEM_EVENT CLASS

85

86

11-------------
11 Constructor\

11---
C_SEM_EVENT: :C_SEM_EVENT(void)
{

II Unnamed semaphore
strcpy(szName, 1111

) ;

11-------------
11 Constructor\

11---
C_SEM_EVENT::C_SEM_EVENT(char *szSemaphoreName)

{
II Named semaphore
strcpy(szName, szSemaphoreName);

The first method is Create() which, like all of the remaining class methods,

simply hides the operating system specific call from the class user. In all methods

of this class, the return value is passed directly from the operating system and any

error values are system specific. This may be a concern if you are planning to port

code, since the return values will be system specific.

11--------
11 Create \

11---
11 Description:
II This method wraps the operating system dependent call to create

II a new event semaphore.

II
11 Parameters:
II none
II
11 Returns:
II Operating system status of create operation

II
int C_SEM_EVENT::Create(void)
{

II Create a new event semaphore
return (int)DosCreateEventSem(szName, &hSemaphore, 0, FALSE);

The Open() method should be called for a semaphore that has been created

previously. This may be done in another program, since semaphores are global to

the system.

NONVISUAL OBJECTS CLASS LIBRARY I CHAPTER 5

11------
11 Open \

11---------------------------------------11 Description: ------------------------------------

11 This method wraps the operating system dependent call to open an
II event semaphore .
II
I I Parameters:
II none
II
11 Returns:

II Operating system status of open operation

II
int C_SEM_EVENT::Open(void)
{

II Open an event semaphore

return (int)DosOpenEventSem(szName, &hSemaphore);

When an a I' ti · fini h
should be called. pp ica on is s ed with a semaphore, the Close() method

11-------
11 Close \

~~-~~;~~;~~;~~~--
11 This method wraps the operating system dependent call to close an
II event semaphore.
II
I I Parameters:
11 none
II
11 Returns:

II Operating system status of close operation
II
int C_SEM_EVENT::Close(void)
{

II Close the event semaphore

return (int)DosCloseEventSem(hSemaphore);

The semaphore maintains an internal count of th b . .

been posted. Reset() retrieves this count and resets the in~e~wi: er of times it has

;~~I~ be a wise practice to call Reset() before the semaphor: i~o;;,~e~:~dze;;c~
e is no guarantee that the post count will be zero. '

THE C_SEM_EVENT CLASS
87

88

11-------
11 Reset \ -------------
11--
II Description: d d t 11 to reset an
II This method wraps the operating system epen en ca
II event semaphore.

II
11 Parameters:
II plPostCount
II
II

pointer to the number of times the semaphore
has been posted

I I Returns: .
II Operating system status of reset operation

II
int C_SEM_EVENT::Reset(ULONG *plPostCount)
{

II Reset the event semaphore
return (int)DosResetEventSem(hSemaphore, plPostCount);

To post to the event semaphore, call the Post() me~h~d. ~os~g is used to

indicate the completion of whatever event the semaphore 1s indicating.

11------

11 Post \ ------------------11---
II Description:
II This method wraps the operating system dependent call to post an
II event semaphore.
II
11 Parameters:
11 none
II
11 Returns: .
II Operating system status of post operation

II
int C_SEM_EVENT::Post(void)
{

II Post the event semaphore
return (int)DosPostEventSem(hSemaphore);

There may be times during the execution of an application when no further

rocessing can occur until a given event takes place. The Wait~definiteq method

~anages this. 0512 and most other operating systems support timed wa~t an~ ~o
wait testing of a semaphore, but I have elected to imple~ent. only t~e _mdefrmte

wait. Adding additional methods to support these extens10ns 1s not difficult.

NONVISUAL OBJECTS CLASS LIBRARY I CHAPTER 5

11----------------
11 Waitlndefinite \

11--~--------------------------ll Description:
II This method wraps the operating system dependent call to wait
II indefinitely for the semaphore to be posted.
II
11 Parameters:
II none
II
11 Returns:
II Operating system status of wait operation
II
int C_SEM_EVENT::Waitlndefinite(void)
{

II Post the event semaphore
return (int)DosWaitEventSem(hSemaphore, SEM_INDEFINITE_WAIT };

Chapter Summary

In this chapter, we have developed all the nonvisual classes for the NVCLASS class

library. We will use most of these classes to create sample applications in Part III. I

have also noted some of the advantages of C++ and object-oriented programming

and briefly discussed the importance of considering portability when writing

applications. Most of the code in this chapter consists of simple wrappers to hide

0512-specific code from the rest of our applications. In the next chapter we will

create the visual portions of our class library, and you will start to see more com

plex code and some examples of how these classes fit together to save time and
effort.

CHAPTER SUMMARY 89

./ Message tables in Presentation Manager

./ Visual control windows using PMCLASS

./ Some CUA'91 visual controls

Developing a Simple PM Class Library

The PMCLASS Class Library

One of the advantages of the 05/2 operating system is its integrated Presentation
Manager interface; if you hunger to write software, you will undoubtedly wai:t
your applications to run on the graphical desktop. The standard C API for P!"11s
much like that of Microsoft Windows in that it does not offer a well-conceived
object-oriented interface. Instead, _implemen~g an application using the ~M
interface involves a confused weavmg of massive case statements to process wm
dow messages. This solution was adequate before C++; however, today it is an
unacceptable answer to a very complex problem: Both IBM and Mi~rosoft have
realized the limitations of the C API and are working on proper C++ interfaces.

The solution I propose is PMCLASS, a C++ class library that~ far less co~
plex than either the IBM or Microsoft offerings, bu~ does ~clu~e uruque capabili
ties of its own. This library eliminates many of the mcons1stenc1es of the standard
API by providing a consistent interface through sound object-oriented .design.
Code developed with PMCLASS doesn't require large case stateme~ts; instead,
separate methods provide control for each mess~ge processed by a ~mdow. .

All PMCLASS window message processmg is managed by rmplementing
message tables as shown below:

DECLARE MSG TABLE(xtMsgMain)
DECLARE MSG(PM CREATE,
DECLARE~SG(PM=GROUP_CLOSE,

C WINDOW MAIN::MsgCreate)
C=WINDOW=MAIN::MsgGroupClose)

90

DECLARE_MSG(PM_SUB_CLOSE,
DECLARE MSG(WM CLOSE,
DECLARE-MSG(WM-SIZE,
DECLARE-MSG(WM-CONTROL,
DECLARE=MSG(WM=PAINT,

C_WINDOW_MAIN::MsgSubscriptionClose)
C_WINDOW_MAIN::MsgClose)
C_WINDOW_MAIN::MsgSize)
C_WINDOW_MAIN::MsgControl
C_WINOOW_STD::MsgPaint)

END_MSG_TABLE

Each message that the program cares about receives an entry in the message
table for the window. These entries contain a window message followed by a class
method reference that the window manager calls when the message is received.
Since PMCLASS is made up entirely of C++ objects, message tables can also con
tain message handlers from parent classes. For example, notice in the previous
table that the entry for WM_PAINT references C_WINDOW_STD::MsgPaint,
which is implemented in the parent class.

The use of message tables forces developers to implement an individual
method for each message. This rigor imposes better design habits, since it man
dates that each member function performs only one task. Debugging becomes a
trivial exercise. This technique also offers some coding advantages. It is very easy
to create a prototype of an application and then gradually add full functionality.
The examples that will be presented in Part III are skeletal, but with a little work
you could turn these into full feature applications simply by adding more methods
to the various classes. If you want to add a new toolbar button, just create the bit
map, add it to the toolbar object for the desired window, then add a new command
processor method to handle the button's message.

PMCLASS also manages other types of tables. When a user selects a menu
option or presses a button, PM generates a WM_ COMMAND message that sparks
another large case statement to process each of the various command messages.
Since PMCLASS manages the WM_COlMMAND window message, it is not rec
ommended that you implement your own handler for this message unless you are
absolutely certain of the effects. A typical command table follows.

DECLARE_COMMAND_TABLE(xtCommandMain)
DECLARE_COMMAND(DM_GROUPS,
DECLARE_COMMAND(DM_SUBSCRIPTIONS,
DECLARE_COMMAND(DM_EXIT,
DECLARE_COMMAND(DM_CONNECT,
DECLARE_COMMAND(DM_INFO,

END MSG TABLE

C_WINDOW_MAIN::CmdGroups)
C_WINDOW_MAIN::CmdSubscriptions)
C_WINDOW_MAIN::CmdExit)
C_WINDOW_MAIN::CmdConnect)
C_WINDOW_MAIN::CmdHelpinfo)

Figure 6-1 illustrates the classes and inheritance in the PMCLASS library.
Each class in this library will be described in detail in this chapter.

THE PMCLASS CLASS LIBRARY 91

C APPLICATION C_WINDOW C_LOG

C_DIALOG C_WINDOW_DEBUG

C_EDIT

C_MLE

C_LISTBOX

C_SLIDER

C_BUTTON

C_TOOLBAR

C_STATUS

C_CONTAINER

C_MENU

C_PUSHBUTTON

Figure 6-1 PMCLASS class hierarchy

92 PM CLASS LIBRARY I CHAPTER 6

Application Class

The most obvious problem with building Presentation Manager applications is the
arduous task of starting up even the simplest of programs. In Chapter 2, we looked
at the simplest possible application, and the startup involved initializing the win
dowing engine, creating a message queue and starting a message loop. After the
window was closed, we had to reverse the process by destroying the message
queue and shutting down the window manager. What makes this process even
worse is the fact that you will have to recode this startup in virtually every PM
application you write.

PMCLASS provides a cleaner solution to this problem. There is very little
startup code to write and nothing to recode. PM applications can be created sim
ply by creating an instance of C_APPLICATION. This class controls all the proce
dures required to initialize and then destroy an application, as well as returning
constant system metric values such as the height of a title bar in pixels.

C_APPLICATION is relatively simple, containing only a few basic meth
ods. The class is shown in Figure 6-2.

C_APPLICATION

HAB hAB C_APPLICATION()
HMQ hMQ -C_APPLICATION()

void Run()
HAB Anchor Block()
int Desktop Height()
int Desktop Width()
int MenuHeight()
int TitleBarHeight()
int DialogBorderHeight()

Figure 6·2 C_APPLICATION class

The header file for C_APPLICATION is shown below:

11--------------------------------11 C_APPLICATION class definition \
11---class C APPLICATION
{ -

private:
HAB
HMQ

hAB;
hMQ;

APPLICATION CLASS

II Handle to application's anchor block
II Handle to application's message queue

93

94

public:
_Export
_Export
void _Export
HAB _Export

C APPLICATION(void);
-C APPLICATION(void);

- Run(void);
AnchorBlock(void);

II System Metrics
int _Export
int _Export
int _Export
int _Export
int _Export

DesktopHeight(void);
DesktopWidth(void);
MenuHeight(void);
TitleBarHeight(void);
DialogBorderHeight(void);

} ;

Listing 6-1 APP.HPP - Class definition for C_APPLICATION

C_APPLICATION implements a single constructor which performs the ini
tialization for a PMCLASS application. It calls Winlnitialize() to initialize the win
dow manager and return a handle to the application's anchor block (HAB). As
discussed in Chapter 2, the HAB is a throwback to IBM mainframe days and is of
little use, but C_APPLICATION implements support for anchor blocks in case it
becomes important in future versions of OS/2.

The constructor also creates a basic application message by calling the Win
CreateMsgQueue(). This queue collects messages from the system and stores them
for the application's use. This queue gets loaded by the message loop in the Run()
method.

11-------------
11 Constructor\
11---
11
II Description:
II This constructor initializes the window manager and create a
II message queue for the application.
II
11 Parameters:
11 none
II
C_APPLICATION::C_APPLICATION(void)
{

II Initialize the window manager
hAB = Wininitialize(O);

II Create a message queue for this application
hMQ = WinCreateMsgQueue(hAB, 0);

PM CLASS LIBRARY I CHAPTER 6

The destructor for C_APPLICATION essentially reverses the work per
formed by the constructor. It calls WinDestroyMsgQueue() to dispose of the appli
cations queue, then calls WinTerminate() to shut down the window manager. The
destructor is the last piece of code executed before the application terminates.

11------------
11 Destructor\
11---
11
II Description:
II This destructor tears down the application. It destroys the
II application's message queue and deinitializes the window manager.
II
11 Parameters:
II none
II
C_APPLICATION::-C_APPLICATION(void)
{

II Get rid of the application's queue
WinDestroyMsgQueue(hMQ);

II Terminate the window manager function
WinTerminate(hAB);

Since PMCLASS supports the use of the anchor block handle,
C_APPLICATION provides a method called AnchorBlock() that returns the HAB.
If you are writing "safe" code, use AnchorBlock() to supply the HAB for any code
that requires it.

11-------------
11 AnchorBlock \
11---
11
II Description:
II This method returns a value for the application's anchor block.
II
11 Parameters:
II none
II
11 Returns:
II HAB - Handle of the app's anchor block
II
HAB C APPLICATION::AnchorBlock(void)
{ -

return hAB;

APPLICATION CLASS 95

96

The final part needed to start a PMCLASS application is the message loop.

The Run() method implements this code, which extracts messages out of the sys

tem message queue and dispatches them to the application.

11-----
11 Run \
11---
11
II Description:
II This method is called to start the message loop for the application.

II It retrieves messages from the system queue and dispatches them to

II the application's message queue.

II
I I Parameters:
II void
II
11 Returns:
II void
II
void C_APPLICATION::Run(void)
{

QMSG qmsg;

II Start the message loop
while(WinGetMsg(hAB, &qmsg, OL, 0, 0))
{

II Dispatch the message to the application queue

WinDispatchMsg(hAB, &qmsg);

The remainder of the methods in the C_APPLICATION class return system

metric values, which are constants for various system parameters. When I say

"constant," I do not use the term in the traditional sense. The system metrics are

the same for every running application; however, some of them can be changed,

either through basic system setup or through device reconfiguration. For example,

the user can change the thickness of the dialog borders and, by rebooting, the user

can alter the display resolution. The important thing to note is that these metrics

are the same for every running application.
The first of these system metric methods is DesktopHeight(), which returns

the height of the desktop window in pixels. This is useful information if you are

writing an application that must scale to the desktop regardless of the resolution.

There are several standard display resolutions ranging from 640 x 480 to 1280 x

1024 or higher; however, there is nothing preventing someone from writing a new

video driver capable of 1063 x 796 (or some other odd resolution); if your program

depends on the resolution of the display, then it should detect this properly.

PM CLASS LIBRARY I CHAPTER 6

11---------------
11 DesktopHeight \

11---II
II Description:

II T~is method returns a value for the height of the desktop window ·
II pixels. in

II
11 Parameters:
II none
II
II Returns:
II int - Height of the desktop in pixels
II
int C_APPLICATION::DesktopHeight(void)
{

RECTL re;

WinQueryWindowRect(HWND DESKTOP &re);
return rc.yTop; - '

Similar~y, the width of the desktop window in pixels can be returned using

the Desktop Width() method in C_APPLICATION.

11--------------
11 DesktopWidth \

11---II
II Description:

II T~is method returns a value for the width of the desktop window in
II pixels.
II
11 Parameters:
11 none
II
11 Returns:
II int - Width of the desktop in pixels
II
int C_APPLICATION::DesktopWidth(void)
{

RECTL re;

WinQueryWindowRect(HWND DESKTOP &re);
return rc.xRight; - '

APPLICATION CLASS 97

98

The height of the menu bar for an application menu can be returned by
placing a call to the MenuHeight() method.

/!------------
// MenuHeight \
/!---
//
//Description: ..
// This method returns a value for the height of a menu in pixels.

II
/ / Parameters:
// none
II
//Returns:
// int - Height of a menu bar in pixel s

II
int C APPLICATION::MenuHeight(void)
{

return WinQuerySysValue(HWND_DESKTOP, SV_CYMENU);

The pixel height of the caption (title bar) can be returned using the TitleBar
Height() method.

/!----------------
// TitleBarHeight \
//---
//
// Description: . . .
// This method returns a value for the height of a title bar in pixels.

II
// Parameters:
// none
II
//Returns:
// int - Height of a title bar in pixels

II
int C APPLICATION::TitleBarHeight(void)
{

return WinQuerySysValue(HWND_DESKTOP, SV_CYTITLEBAR);

Finally, the thickness or height of a dialog border can be returned by the
Dialog Border Height().

PM CLASS LIBRARY I CHAPTER 6

/!--------------------
// DialogBorderHeight \
//---
//
//Description:
// This method returns a value for the height of a dialog border in pixels.
II
// Parameters:
// none
II
//Returns:
// int - Height (thickness) of a dialog border in pixels
//
int C_APPLICATION::DialogBorderHeight(void)
{

return WinQuerySysValue(HWND_DESKTOP, SV_CYDLGFRAME);

Notice that I have implemented only enough of the system metric code
required. Undoubtedly you will want to implement some additional system met
ric code to support the applications you will be writing with PMCLASS. Add your
additional member function to the C_APPLICATION class.

Basic Window Class

The basic building block for any graphical user interface is, of course, the window.
Windows can take many forms-in fact, almost every visual effect on an 05/2
screen is a type of window. Applications are obviously windows, but less obvious
window.types include list boxes, push buttons, and check boxes; even the title bar
of a frame window is a type of window that can be manipulated like any other.

The base class for all windows in the PMCLASS library is C_ WINDOW,
which provides the generic functionality for all derived windows. This includes
such characteristics as the foreground and background colors, the font, the current
text contents, the visibility of the window, etc. C_WINDOW is the largest class in
this book, consisting of more than 30 methods, and is about as large as you will
ever want to make a class. However, so much of the functionality for all windows
is common that the base class tends to be much bigger than any of its children.
Don't be too concerned about the size of C_WINDOW, though, as most of the
methods are simple wrappers around OS/2 specific API functions. The
C_ WINDOW class is illustrated in Figure 6-3.

BASIC WINDOW CLASS 99

100

C_WINDOW

HWND hFrameWnd C_WINDOW()

HWND hWnd -C_WINDOW()

char "szClassName HWND Parent Window()

UL ONG lFrameFlags HWND Window()

T_MSG_TABLE "pxtMsgTable void Window()

T_MSG_TABLE "pxtCommandTable void ParentWindow()

void" SendMsg()

void PostMsg()

void SetText()

void GetText()

void Enable()

void Show()

void Hide()

void Update()

char" ClassName()

void ClassName()

void GetSizePosition()

void GetSize()

void GetPosition()

void SetForegroundColor()

void SetBackgroundColor()

void SetFont()

void GetForegroundColor()

void GetBackgroundColor()

void GetFont()

void Focus()

void Invalidate()

BOOL Register()

void Create()

void Destroy()

void Message Table()

void CommandTable()

virtual void" WindowProc()

Figure 6-3 C_WINDOW class

The header file for C_WINDOW is shown in Listing 6-2:

class C_WINDOW; II Predefine the class so we can use it in the
II following definitions

1 11
,-

PM CLASS LIBRARY I CHAPTER 6

11----------------
11 T_MSG_FUNCTION \

11--11 Definition. used by class to reference message methods
typedef void *(C_WINDOW::*T_MSG_FUNCTION)(void*• void*);

11-------------
11 T_MSG_TABLE \

11--11 Definition used to define message table elements
typedef struct
{

ULONG
T _MSG _FUNCTION

T_MSG_TABLE;

lMsg;
Function;

11-----------------------
11 DECLARE MESSAGE TABLE \ 11--------: _______ : __ _

II macro used to define the start of a message table
#define DECLARE_MSG_TABLE(msg_table)\

T_MSG_TABLE msg table[] =\
{\ -

11-------------------
11 END MESSAGE TABLE \ II----: _______ : __ _

II macro used to define the end of a message table
#define END MSG TABLE\

{ 0, 0 }\ - -
};\

11-------------
11 DECLARE MSG \ 11--------: __ _

II macro used to define a message table element
#define DECLARE_MSG(msg, function)\

{ (msg), ((T_MSG_FUNCTION)(function)) },

11----------------
11 Command Macros \

11--
11 The following macros are used to define command table constructors

II Since these are the format as the MESSAGE macros we can simply redefine
II the message macros.
#define DECLARE_COMMAND_TABLE DECLARE MSG TABLE
#define DECLARE_COMMAND DECLARE-MSG-
#define END_COMMAND TABLE END_MSG=TABLE

BASIC WINDOW CLASS 101

102

/J----------------------
11 PMCLASS Message ID's \
/J--
11 PM_CREATE is the first message that a window receives after it has been

JI created.
JI PM_USER is the first message that can be user defined

II
#define PM CREATE

PM USER
WM USER JI Sent when window is created

#define WM USER + 1 //First available user defined message

11---------------------------
11 C_WINDOW class definition\
/1---
class C WINDOW
{

private:
HWND
HWND
char
UL ONG

public:

hFrameWnd;
hWnd;
*szClassName;
l Frame Flags;

//Frame window handle
// Handle to this window
II Class name string
II Frame creation flags

T MSG TABLE
T MSG TABLE

*pxtMsgTable;
*pxtCommandTable;

// Table of Window messages
//Table of Window command handlers

_Export
_Export
_Export

HWND
HWND
void
void
void *
void
void
void
void
void
void
void
char *
void
void

void
void
void

C WINDOW(void);
C-WINDOW(T MSG TABLE *pxtMsg);
-C_WINDOW(void-);

_Export
_Export
_Export
_Export
_Export
_Export
_Export

Export
_Export
_Export
_Export
_Export
_Export
_Export
_Export

_Export
_Export
_Export

ParentWindow(void);
Window(void);
Window(HWND hNewWindow);
ParentWindow(HWND hNewWindow);
SendMsg(ULONG lMsg, void *mpl, void *mp2);
PostMsg(ULONG lMsg, void *mpl, void *mp2);
SetText(char *szString);
GetText(char *szString, int iBufferLength);
Enable(BOOL bState);
Show(void);
Hide(void) ;
Update(void);
ClassName(void);
ClassName(char *szClass);
GetSizePosition(int *piX, int *piY,

int *piCX, int *piCY);
GetSize(int *piCX, int *piCY);
GetPosition(int *piX, int *piY);
SetForegroundColor(BYTE byRed,

BYTE byGreen, BYTE byBlue);

PM CLASS LIBRARY I CHAPTER 6

void _Export SetBackgroundColor(BYTE byRed,

void Export
BYTE byGreen, BYTE byBlue);

SetFont(char *szFont, int iSize);
void Export GetForegroundColor(BYTE *pbyRed,

void _Export
BYTE *pbyGreen, BYTE *pbyBlue);

GetBackgroundColor(BYTE *pbyRed,

void _Export
BYTE *pbyGreen, BYTE *pbyBlue);

GetFont(char *szFont);
void _Export Focus(void);
void _Export Invalidate(void);
BOOL Export Register(char *szClassName); -
void Export Create(HWND hFrameWnd, HWND hWnd }; -
void Export Destroy(void);
void _Export MessageTable(T_MSG_TABLE *pxtMsg);
void Export CommandTable(T_MSG_TABLE *pxtCommands) ;

};
virtual void * _ExportWindowProc(ULONG lMsg, void *mpl, void *mp2);

// OS/2 PM window procedure
MRESULT EXPENTRY StdWndProc(HWND hWnd, ULONG lMsg, MPARAM mpl, MPARAM mp2);

Listing 6·2 WINDOW.HPP- Class definition for C_WINDOW

C_WINDOW provides two constructors; which one a derived classes calls
depends on the presence of a window message table. This first of these is the void

constructor; this simply initializes the important attributes in the base class.

11-------------
11 Constructor\

11---11
JI Description:
II This is the void constructor for the C WINDOW class~ It simply
II defaults the created window parameters~
II
// Parameters:
II none
II
C WINDOW::C WINDOW(void)
(-

II Initialize the window handles
hFrameWnd = NULLHANDLE;
hWnd = NULLHANDLE;
pxtMsgTable = O;
pxtCormnandTable = O;
szClassName = O;

BASIC WINDOW CLASS 103

104

The second constructor is used for derived windows that provide a win
dow message table. In addition to initializing the class attributes, this_ constructor
associates th~ supplied message table with the instance. As noted earlier, message
tables are crucial to process window messages for the PMCLASS derived window.

//-------------
//Constructor\
//---
//
// Description:
// This is the void constructor for the C_WINDOW class. It defaults the
// created window parameters and initializes the message table for the
// window.
II
// Parameters:
// none
II
C_WINDOW::C_WINDOW{ T_MSG_TABLE *pxtMsg)
{

//Initialize the window handles
hFrameWnd = NULLHANDLE;
hWnd = NULLHANDLE;
pxtMsgTable = O;
pxtCommandTable = O;
szClassName = O;

//Set up the specified message table
MessageTable{ pxtMsg);

C_ WINDOW also implements a destructor that resets the window handles
in the object. The destructor is not strictly necessary; however, it is useful if you
want to debug some derived class and want to verify that the destructor is called.

//------------
//Destructor\
//---
//
// Parameters:
// none
II
C_WINDOW::-C_WINDOW{ void)
{

//Get rid of the window handles
hFrameWnd = NULLHANDLE;
hWnd = NULLHANDLE;

PM CLASS LIBRARY I CHAPTER 6

Every window has an owner window, which is usually the window that
creates it. In the case of an application window, the owner is the desktop,
HWND_DESKTOP. More frequently, however, the owner is an application win
dow and the child is a control window, such as a toolbar or list box.

C_ WINDOW provides a ParentWindow() method to return the handle of
the owner window. This value is an HWND value similar to any Presentation
Manager window handle.

//--------------
// ParentWindow \
//---
//
//Description:
// This method returns a value for the parent window parameter within
// the class.
II
// Parameters:
// none
II
//Returns:
// HWND - Window handle of the parent/owner window
II
HWND C_WINDOW::ParentWindow(void)
{

return hFrameWnd;

In a similar vein, C_ WINDOW can also return a PM window handle for the
current instance. Window() provides this functionality, which PMCLASS code
uses extensively; you may find this useful if you are interfacing with the PM APL

//-------
//Window\
//---
//
// Description:
// This method returns a handle for the PM window parameter within
II the class.
II
// Parameters :
// none
II
//Returns:
// HWND - Window handle of the window
II
HWND C WINDOW::Window{ void}
{ -

return hWnd;

BASIC WINDOW CLASS 105

106

The complementary operation to returning the current window handle is to
set it. The Window() method is overloaded and can also accept a window handle
that it uses to set the window attribute within C_ WINDOW. This method is typi
cally called by a constructor from a derived class and would not normally be called
by application code.

//-------
/!Window\
11---
//
// Description:
// This method assigns a handle to the PM window parameter within
// the class.
II
// Parameters:
// hNewWnd - Window handle of the window
II
// Returns:
// void
II
void C_WINDOW::Window(HWND hNewWnd
{

hWnd = hNewWnd;

The ParentWindow() method is also overloaded like Window(). With this
method, a derived class constructor can set the owner window attribute.

/!--------------
!/ ParentWindow \
/l---
11
//Description:
// This method assigns a handle to the parent window parameter within
// the class.
II
// Parameters: II hNewWnd - Window handle of the parent/owner window
II
// Returns:
// void
II
void C_WINDOW::ParentWindow(HWND hNewWnd)
{

hFrameWnd = hNewWnd;

PM CLASS LIBRARY I CHAPTER 6

The Presentation Manager API supplies a WinSendMsg() function that is
used to send~ message to a specified window. What this really does is drop the
new message ~to the system queue and wait for the message to be fully processed
by the target window before returning.

//--------
// SendMsg \
//---//
//Description:
// This method wraps the API call to send a message and its parameters
// to the window message handler.
II
// Parameters:
// lMsg - Window message to send
// mpl,mp2 - message parameters send with the message
II
//Returns:
// void * - result of the send opera ti on
II
void *C_WINDOW::SendMsg(ULONG lMsg, void *mpl, void *mp2)
{

//Send a message to this window
return (void *)WinSendMsg(hWnd, lMsg, mpl, mp2);

. _YV~endMsg() does not work on objects; however, we can wrap the func-
tion within ~ur class. SendMsg() provides this functionality for the C_ WINDOW
class. The WmSendMsg() function can still be called as follows:

WinSendMsg(xcObject.Window(), WM_CLOSE, 0, O);

. . Though this line is valid, it detracts from the object-oriented goal we are
stnvmg for. A better way would be:

xcObject.SendMsg(WM_CLOSE, 0, 0);

The PostMsg9 m~thod is sim~ar to SendMsg(), except it wraps the Win
PostMsg() API function mstead. Posting a message in 05/2 places the message in
the ~ystem que~e and returns immediately; this method should be used when
poss~ble to provide smoother program execution. You need to be cautious about
posting messages that reference temporary data, however, because the data point
ers may be lost before the message actually reaches its target window· a program
crash (access violation) will be the probable result. '

BASIC WINDOW CLASS 107

108

11---------
11 PostMsg \ --11---------------------------------
II
II Description: d ·t ters II This method wraps the API call to post a message an 1 s parame
II to the window message handler.
II
11 Parameters:
11 l Msg
II mpl,mp2

- Window message to post
- Message parameters send with the message

II
11 Returns:
II void
v) void C_WINDOW::PostMsg(ULONG lMsg, void *mpl, void *mp2
{

II Post a message to this window
WinPostMsg(hWnd, lMsg, mpl, mp2);

The text within a window can be set using the C_ ~W::SetTe~t()
method. This sets the text in the client area of the win?-ow, which means the wu:i
dow must be some type of control win~o"'." like ~ edit control, for example. This
method does not set the title of an application window.

11---------
11 SetText \ ---------------------------------------11------------------------------------
II
II Description: call to set the text contents of a window II This method wraps the API
II to a specific string.
II
I I Parameters:
II szString _ Pointer to new text stri ng
II
11 Returns:
II void

~~id C_WINDOW::SetText(char *szString)
{

II Set the window text (title~
WinSetWindowText(hWnd, szStr1ng);

PM CLASS LIBRARY I CHAPTER 6

The text can be retrieved from the window by using the GetText() method.
This method wraps the WinQueryWindowText() API function, and has the same
requirements as SetText(). It will not return the title of an application window.

11---------
11 GetText \
11---11
II Description:
II This method wraps the API call to retrieve the text contents of a II window and write this string to an output buffer.
II
I I Parameters:
II szString
II iBufferSize
II
11 Returns:
11 void
II

- Pointer to a location where text string will be written
- Size of the output buffer

void C_WINDOW::GetText(char *szString, int iBufferSize)
{

II Set the window text (title)
WinQueryWindowText(hWnd, iBufferSize, szString);

Presentation Manager provides the capability to enable or disable win
dows. C_ WINDOW wraps this feature into the Enable() member function. This
method accepts a Boolean value that will either enable the window if TRUE or dis
able the window is FALSE.

For a child window, such as a push button, this has the effect of graying the
button and preventing the user from pressing it-a useful capability for prevent
ing the activation of an operation that is temporarily invalid. The FTP application
in Chapter 11 uses this feature to prevent the entry of FTP commands while a com
mand is being processed.

11--------
11 Enable \
11---11
II Description:
II This method wraps the API call to enable or disable the window,
II which allows or prevents the user from invoking any action. This II is particularly useful for enabling of disabling child controls.
II
11 Parameters:
II bState - TRUE or FALSE to enable or disable the window
II

BASIC WINDOW CLASS 109

11 Returns:
II void
II
void C_WINDOW::Enable(BOOL bState)
{ . d II Enable or disable the w1n ow

WinEnableWindow(hWnd, bState);

The visibility of a window is controlled by the Show() and Hi~e();;,~~~
in the C_ WINDOW class. The Showq .method makes a calWl to th~ s~~parRESTORE

W. d p () Sh w() specifies the SWP SHO an -WinSet m ?w os . . ohi h f the window t~ become visible and restores it options to this function, W: . c orces
to its normal size and position.

11------
11 Show\ ---------------------------------11--
II
jj Desc~~f:i~;~hod wraps the API call to display a window a~ ~h~ t~p-~f .the II window stack. If the window is currently hidden or m1n1m1ze , is
II restored.
II
11 Parameters:
II void
II
11 Returns:
11 void

~~id C_WINDOW::Show(void)
{

WinSetWindowPos(hFrameWnd, HWND_TOP, 0, 0, 0, 0,
SWP_SHOW I SWP_ZORDER I SWP_ACTIVATE I SWP_RESTORE);

The Hide() method is the functional opposite of Show(). It uses the Win
ShowWindow() function to remove the window from the screen.

11------
11 Hide\ ------------------------------11---
II
II Description: . d The window is II This method wraps the API call to hide a w1n ow.
II removed from the screen but is not destroyed .
II

-------------------liiiiiiiiiiiii=~P~M~C~LA~SS LIBRARY I CHAPTER 6
110

II Parameters:
II void
II
11 Returns:
II void
II
void C_WINDOW::Hide(void)
{

WinShowWindow(hFrameWnd, FALSE);

Windows derived from the C_ WINDOW class can be updated by calling
the Update() method. This is a simple wrapper for the PM API that calls the Win
UpdateWindow() function.

11--------
11 Update \
11---11
II Description:
II This method wraps the API call to update a window display.
II
11 Parameters:
II void
II
11 Returns:
II void
II
void C_WINDOW::Update(void)
{

II Update the window to show any changes
WinUpdateWindow(hFrameWnd);

C_ WINDOW implements a ClassName() method to set the name of the PM
window class. This must be called before the window is registered and is called
only by the C_WINDOW::Register() method. You should not call this under nor
mal circumstances for an application window derived from C_ WINDOW _STD.

Control windows, such as the list box, are already registered by PM as part
of its startup process. PMCLASS, however, still requires some knowledge of the
class name for its own internal purposes during window creation. As you will see
when the C_LISTBOX class is described later in this chapter, its constructor explic
itly calls ClassName().

BASIC WINDOW CLASS 111

112

//----------
// ClassName \

//---

//
//Description:
// This method sets the internal class name attribute within C_WINDOW.

// This attribute is used to register the class with the operating system.

II
// Parameters:
// szClass - Pointer to name for this window class

II
//Returns:
// void
II
void C_WINDOW::ClassName(char *szClass)

{
szClassName = szClass;

ClassName() is an overloaded C++ member function. In this second

method, the class name string is returned to the caller.

//-----------
// ClassName \

/!---

//
//Description:
// This method returns the internal class name attribute within C WINDOW.

// This attribute is used to register the class with the operating system.

II
// Parameters:
// void
II
//Returns:
// char* - Pointer to the name of this window class

II
char *C_WINDOW::ClassName(void)

{
return szClassName;

As I mentioned previously, all objects derived from the C_ WINDOW class

have a size and position on the screen. To retrieve this information, C_ WINDOW

provides a GetSizePosition() method, which returns the coordinates of the lower

left comer of the window, as well as its width and height.

GetSizePosition() wraps the PM function WinQueryWindowPos(), which

returns an SWP structure. The actual dimensions and position of the window are

broken out of this structure and returned to the caller.

PM CLASS LIBRARY I CHAPTER 6

//-------------------
// GetSizePosition() \

/!--// ------------------ -----------
//Description:

/
/// tThi~tmethod retrieves the current window size and position relative

o i s owner.
II
// Parameters:
II
II
II

*piX, *piY
*piCX,*piCY

//Returns:
II
II

void

- Po~nters to a data area to get the X,Y coordinates

- Pointers to a data area to get the window dimensions

~oid C_WINDOW::GetSizePosition(int *piX, int *piY, int *piCX, int *piCY)

SWP swp;

WinQueryWindowPos(hWnd, &swp);

*piX = swp.x;
*piY = swp.y;
*piCX = swp.cx;
*piCY = swp.cy;

di ?etSize() exe~utes similar code to GetSizePosition() except that only the

mens1ons of the window are returned to the caller.

//-----------
// GetSize() \

jj---

11 Description:

// This method retrieves the current window size.

II
// Parameters:
II
II

*piW,*pil

// Returns:
II
II

void

- Pointers to a data area to get the window dimensions

~oid C_WINDOW::GetSize(int *piCX, int *piCY)

SWP swp;

WinQueryWindowPos(hWnd, &swp);

BASIC WINDOW CLA.=SS:-=:::::==========:=::=::::::::===:=======;;:::==:::==-=::1

113

114

*piCX = swp.cx;
*piCY = swp.cy;

The position of the window can also be returned by itself. Placing a call to

the GetPosition{) method returns the coordinates of the window origin.

11---------------
11 GetPosition() \

11--

11
II Description:
II This method retrieves the current window position relative

II to its owner.

II
11 Parameters:
II *piX, *piY - Pointers to a data area to get the X,Y coordinates

II *piW,*piL - Pointers to a data area to get the window dimensions

II
11 Returns:
II void
II
void C_WINDOW::GetPosition(int *piX, int *pi Y)

{
SWP swp;

WinQueryWindowPos(hWnd, &swp);

*piX = swp.x;
*piY = swp.y;

C_ WINDOW provides full capability of setting window colors. The text

color can be set by calling the SetForegroundColor() method. This method accepts

three parameters representing the red, green, and blue color levels of the color

being set. This RGB value ranges from 0,0,0 to 255,255,255 to produce around

65,000 distinct colors. Note that, due to limitations in the video drive or hardware,

some of these color values may be rendered using a dithering process.

After the color is set using the WinSetPresParam() API function, the win

dow is redrawn by calling the Invalidate() and Update() methods.

11----------------------
11 SetForegroundColor() \

11--

11
11 Description:
II This method sets the foreground (text) color of the window using

II the specified RGB color parameters.

PM CLASS LIBRARY I CHAPTER 6

II
11 Parameters:
II byRed
II byGreen
II byBlue

- Red level for the window

- Green level for the window

- Blue level for the window

II
II Returns:
II
II

void

~oid C_WINDOW::SetForegroundColor(BYTE byRed,

RGB2 rgb;

II Create an RGB value
rgb.bRed = byRed;

rgb.bGreen = byGreen;

rgb.bBlue = byBlue;
rgb.fcOptions = O;

II Set the foreground color

WinSetPresParam(Window(), PP_FOREGROUNDCOLOR,

II Force the window to update
Invalidate();
Update();

BYTE byGreen, BYTE byBlue)

sizeof(RGB2), &rgb);

The background color of a window b .

Color() method. The operation of the me ~an e s~t ~th the SetBackground

groundColor() method shown pre . 1 thod lS essentially identical to the SetFore-

v1ous y, so we need not repeat it here.

11----------------------
11 SetBackgroundColor() \

~~--

11 Description:

11 This method sets the back round .

II the specified RGB color Pg t color of the w1ndow using

II arame ers.

11 Parameters:
11 byRed - Red level for the window
II byGreen
II byBlue

- Green level for the window

- Blue level for the window
II
II Returns:
11 void
II
VOid c WINDOW··s ta

- .• e ackgroundColor(BYTE byRed,

BASIC WINDOW CLASS

BYTE byGreen, BYTE byBlue)

115 I

116

RGB2 rgb;

II Create an RGB value
rgb.bRed = byRed;
rgb.bGreen = byGreen;
rgb.bBlue = byBlue;
rgb.fcOptions = 0;

II Change the background color
WinSetPresParam(Window(). PP_BACKGROUNDCOLOR. sizeof(RGB2). &rgb);

II Force the window to update
Invalidate();
Update();

The text font used to display information within a window can be chan~ed
using the SetFont() method. This member _func_tio1: acc~pts a font ~ame an~ a size,
and formats an 0512 compatible font string, 1ssumg 1t to the window usmg the
WinSetPresParam() API function.

11-----------
11 SetFont() \ _ -----------------11-- -
II
II Description: .. II This method sets the font of the window to the value spec1f1ed.
II
11 Parameters:
I I szFont - New font
II iSize - Font size
II
11 Returns:
II void
II
void c_WINDOW::SetFont(char *szFont. int iSize)
{

char szString[256];

/I Create an OSl2 compati~le font st~i~g
sprintf(szString. "%d.%s". szFont. iS1ze };

II Set the new font string
WinSetPresParam(Window(). PP_FONTNAMESIZE. 256, szFont);

PM CLASS LIBRARY I CHAPTER 6

C_ WINOOW supplies complementary methods to retrieve the colors and
font specified for a current window. The GetForegroundColor(), GetBackground
Color(), and GetFont() methods are very similar; all three call the PM API function
WinQueryPresParam() to request the specified color or font from the window.

11----------------------
11 GetForegroundColor() \
11---11
11 Description:
II This method gets the foreground (text) color of the window returning II it as separated RGB values.
II
11 Parameters:
11 pbyRed
II pbyGreen
11 pbyBlue
II
II Returns:
II void
II

- Pointer to output location for Red level for the window
- Pointer to output location for Green level for the window
- Pointer to output location for Blue level for the window

void C_WINDOW::GetForegroundColor(BYTE *pbyRed, BYTE *pbyGreen. BYTE *pbyBlue)
{

RGB2 rgb;

II Get the foreground color
WinQueryPresParam(Window(). PP_FOREGROUNDCOLOR. O. NULL, sizeof(RGB2),

&rgb, QPF_NOINHERIT);

II Separate the RGB values
*pbyRed = rgb.bRed;
*pbyGreen = rgb.bGreen;
*pbyBlue = rgb.bBlue;

11----------------------
11 GetBackgroundColor() \
11---11
II Description:
II This method gets the background color of the window. returning II it as separated RGB values.
II
I I Parameters:
11 pbyRed - Pointer to output location for Red level for the window 11 pbyGreen - Pointer to output location for Green level for the window 11 pbyBlue - Pointer to output location for Blue level for the window II

BASIC WINDOW CLASS 117

118

11 Returns:
II void
II void C_WINDOW::GetBackgroundColor(BYTE *pbyRed,

BYTE *pbyGreen, BYTE *pbyBlue)

{
RGB2 rgb;

II Get the background color
WinQueryPresParam(Window(), PP BACKGROUNDCOLOR, 0, NULL, sizeof(RGB2),

- &rgb, QPF_NOINHERIT);

II Separate the RGB value
*pbyRed = rgb.bRed;
*pbyGreen = rgb.bGreen;
*pbyBlue = rgb.bBlue;

11-----------
11 GetFontO \
11---
11
II Description: II This method gets the current font of the window, returning as a
II string in the format size.font.
II
I I Parameters: II szFont - Pointer to current window font
II
11 Returns:
II void
II
void C_WINDOW::GetFont(char *szFont)
{

char szString[256];

WinQueryPresParam(Window(), PP FONTNAMESIZE, 0, NULL, 256, szString,
- QPF_NOINHERIT);

strcpy(szFont, szString);

The PM API function call WinlnvalidateRect() is used to ~orce a .windo~ to
repaint itself. In PMCLASS the C_ WINDOW method also provides t~s fun~tion
ality. In fact, the Invalidate() member function simf ~Y wraps the Winlnv.ali~ate
Rect() function to isolate this operating system specific code from the application.

PM CLASS LIBRARY I CHAPTER 6

11--------------
11 Invalidate() \
11---11
11 Description:
II This method wraps the WinlnvalidateRect() API function used to II force a redraw of the window.
II
11 Parameters:
II void
II
11 Returns:
II void
II
void C_WINDOW::Invalidate(void)
{

II Force the window to be redrawn
WinlnvalidateRect(hWnd, NULL, TRUE);

Another simple code wrapper is the Focus() method. It forces PM to assign
control of the mouse and keyboard to the window associated with this instance.

. If you are using Focus() in a window creation method, you should have the
function return a TRUE value rather than the typical FALSE. Failing to do this can
result in a focus setting failure. If you are setting the focus and it is failing this is
the first thing you should check. '

11---------
11 Focus() \
11---11
11 Description:
II This method wraps the WinSetFocus() API function and is used to II give control of the mouse and keyboard to the window.
II
11 Parameters:
11 void
II
11 Returns:
11 void
II
void C WINDOW::Focus(void
{ -

WinSetFocus(HWND_OESKTOP, hWnd);

BASIC WINDOW CLASS 119

120

As I mentioned earlier, before we can create any window, it needs to be reg

istered with Presentation Manager. Using the standard API, this operation

involves several tedious steps complicated by multiple parameters. Using the

interface provided in the PMCLASS library, new window objects typically manage

all of this automatically, using just two calls to C_ WINOOW methods.
The first of these methods is Register(). Like WinRegisterWindow(), Regis

ter() tells the operating system about a new window, but it does this simply by

specifying a class name string. All window message procedure handling is per

formed for a window class by virtue of being derived from C_ WINDOW.

//------------
//Register()\
//---
//
//Description:
// This method registers a window class of the specified name. This
// must be performed before the window can be created.

II
// Parameters:
// szClass - Name of the class being registered

II
//Returns:
// BOOL - Error result of the registration

II
BOOL C_WINDOW::Register(char *szClass)
{

ClassName(szClass);

return WinRegisterClass(0, szClassName, (PFNWP)StdWndProc,
CS_SIZEREDRAW, sizeof(C_WINDOW *));

The second method required to initiate a new window instance with

PMCLASS is, of course, Create(). If you look at the source code for

C_ WINDOW::Create(), you will notice that nothing actually gets created. The han

dles for the window and its owner are stored in the class, and the method sends a

PM_ CREATE to the window. No windows get created-so where are the win

dows? As you will see when we examine the C_WINDOW_CHILD and

C_ WINDOW _STD classes, the real windows get created there. The reason for this

is that there are several types of windows created in distinct ways.
Control windows that originate within dialog resources are automatically

created when the dialogs are loaded. All PMCLASS objects need to do is "connect"

to an existing window.
The C_ WINDOW::Create() method manages all the window creation code

common to all types of windows. For example, look at C_LISTBOX; you will see

that C_LISTBOX::Create() performs some list box specific creation and finishes by

calling the C_ WINDOW::Create() method.

PM CLASS LIBRARY I CHAPTER 6

//---------
// Create() \

//---
//
// Description:
// This method accepts a parent/owner window and a window handle and
// creates an association between the two. If a message table was
// specified when the instance was created, a PM CREATE message
// is generated. -

II
// Parameters:
// hFrameWnd - Owner window handle
// hWnd - Window handle of this instance
II
//Returns:
// void
II
void C_WINDOW::Create(HWND hFrameWnd, HWND hWnd)
{

//Make sure our parent knows about the new window handle
ParentWindow(hFrameWnd);
Window(hWnd);

//Tell the Window procedure about the this pointer
if(pxtMsgTable)

SendMsg(PM_CREATE, MPFROMP(this), O);

After a window has reached the end of its useful life, it should be destroyed.

l?e PM way to accomplish this is by placing a call to WinDestroyWindow() func

tion. PMCLASS wraps this operating system specific code into an equivalent
method Destroy().

//-----------
// Destroy() \

//---
//
// Description:
// This method can be called to destroy a window. It wraps the
II WinDestroyWindow() AP! to accomplish this.
II
// Parameters:
// void
II
//Returns:
// void
II
void C_WINDOW::Destroy(void)

BASIC WINDOW CLASS 121

122

II Destroy the frame window for this instance
WinDestroyWindow(WinQueryWindow(hWnd, QW_PARENT));

To associate the message table with the window object, C_WINOOW
implements the MessageTable() method. This routine is used internally by the
class and should never be invoked from user code.

11----------------
11 MessageTable() \
11---
11
II Description: . II This method assigns a value to the message table class attribute.
II
11 Parameters:
II void
II
11 Returns:
II void
II
void C_WINDOW::MessageTable(T_MSG_TABLE *pxtMsg)
{

pxtMsgTable = pxtMsg;

Each window in the system has the option of processing command ~es
sages that are generated using the WM_ COMMAND window message. To assign
a command table to begin processing WM_COMMAND .messages, use the Co~
mandTable() method. Once this table is attached, processing of commands begins
automatically.

11----------------
11 CommandTable() \
11---
11
II Description: . II This method assigns a value to the corrmand table class attribute.
II
11 Parameters:
II void
II
11 Returns:
II void
II
void C_WINDOW::CommandTable(T_MSG_TABLE *pxtCommands)

PM CLASS LIBRARY I CHAPTER 6

pxtCorrmandTable = pxtCorrmands;

The key feature of PMCLASS that distinguishes it from ordinary Presenta
tion Manager code is the use of message and command tables. These tables elimi
nate the need for those unwieldy case statements familiar to 0512 C programmers.
No application written with PMCLASS needs to have these huge case statements.
Instead, the mother of all PMCLASS windows, C_WINOOW, provides a Window
Proc() method that controls the flow of window messages.

WindowProc() examines messages as they arrive in the window's message
loop. For each message, the message table is scanned for a match and, if found, the
associated message handler is called. If the message arriving into WindowProc() is
a WM_ COMMAND, WindowProc() scans any assigned command table owned by
the instance.

The result of the table implementation supported by WindowProc() is a
very clean, compact design that can be used for both rapid prototyping and fin
ished applications. The important distinction between PMCLASS and other com
mercial class libraries is that is does not prevent or complicate interfacing to the
standard PM APL API calls can be embedded transparently.

11------------
11 WindowProc \
11---
11
II Description:
II This method is the message manager for the window. It accepts a
II message and two optional parameters and compares the supplied
II message to those stored in the window's message table. If a
II message match is found the appropriate message handler is invoked.
II
11 Parameters:
11 lMsg - Message passed to the dialog window
11 mpl - Pointer to first optional parameter
II mp2 - Pointer to second optional parameter
II
11 Returns:
II Result of corrmand or default handler result.
II
void *C WINDOW::WindowProc(ULONG lMsg, void *mpl, void *mp2)
{ -

int iCtr;
int iCmdCtr;
void *(C_WINDOW::*Function)(void*, void*);

iCtr = O;
while((pxtMsgTable+iCtr)->lMsg

BASIC WINDOW CLASS 123

124

II If this is a WM_COMMAND message, see if the window has defined

II a conmand table
if(lMsg == WM_COMMAND && pxtCorrmandTable)
{

II Scan the window's corrmand table for the command
iCmdCtr = O;
while((pxtCorrmandTable+iCmdCtr)->lMsg)
{

II Did we find a corrmand match
if((pxtCorrmandTable+iCmdCtr)->lMsg == COMMANDMSG(&lMsg)->cmd)
{

II Process the window command by calling the correct
II processor
Function = (pxtCorrmandTable+iCmdCtr)->Function;
return (this->*Function)(mpl, mp2);

iCmdCtr++;

if((pxtMsgTable+iCtr)->lMsg == lMsg)
{

Function = (pxtMsgTable+iCtr)->Function;
return (this->*Function)(mpl, mp2);

i Ctr++;

return WinDefWindowProc(Window(), lMsg, mpl, mp2);

The final function in the WINDOW.CPP source file is a C function called

StdWndProc(). This function acts as the link between the unwieldy world of C API

and the control and comfort of PMCLASS. StdWndProc() is a standard Presenta-

tion Manager window procedure referenced by the Register() method. .

All PMCLASS windows (except dialogs) are managed by the same wmdow

function, forcing developers to write a separate window manager procedure _for

each window. StdWndProc() first monitors incoming window messages looking

for a WM_ CREATE message. When this message arrives, a pointer to the window

instance is stored in the user data area for this window. This helps to eliminate glo

bal memory use and allows StdWndProc() to determine which window the mes

sage needs to be sent to. Once the instance information is stored in the user area_ of

the window, all further message processing is managed by C_WINDOW::Wm

dowProc().

PM CLASS LIBRARY I CHAPTER 6

StdWndProc() also looks for WM_DESTROY messages. This is the last mes

sage that a wu:idow will s:e-it is the notification that StdWndProc() uses to

remove the ?bJect data pomt~r from its user data area, thus preventing the

PMCLASS wmdow handler, WmdowProc(), from trying to process anything else.

11-------------
11 StdWndProc \

11---11
II Description:

II Function acts as the interface between the PM C API interface

II and the C++ class interface used by the PMCLASS library. Once

II the instance has been created, all message processing passes

II to the handler methodwithin the object. If the window instance has

II not yet been created, the PM default interface manages the message.
II
11 Parameters:
11 lMsg - Message passed to the window
II mpl - Pointer to first optional parameter
II mp2 - Pointer to second optional parameter
II
11 Returns :
II Result of corrmand or default handler result.
II
MRESULT EXPENTRY StdWndProc(HWND hWnd, ULONG lMsg, MPARAM mpl, MPARAM mp2)
{

C WINDOW *pxcThis;

II Look for PM_CREATE messages
if(lMsg == PM CREATE)
{ -

II Set the user window word to an instance of this
WinSetWindowULong(hWnd, 0, (ULONG)mpl);

II Look for WM DESTROY
if(lMsg == WM=DESTROY)
{

II Remove the pointer to this from the window word
WinSetWindowULong(hWnd, 0, (ULONG)O);

II Get a pointer to the current window instance
pxcThis = (C_WINDOW *)Wi nQueryWindowULong(hWnd, o);

II If the instance is defined and it has a window, pass the message
II to the objects window message handler
if(pxcThis && pxcThis->Window())

BASIC WINDOW CLASS 125

126

return pxcThis->WindowProc(lMsg, mpl, mp2);

II No instance so default the message
return WinDefWindowProc(hWnd, lMsg, mpl, mp2);

As you can appreciate, C_ WINDOW is a huge class, but for the most part it

contains mundane function wrappers used to hide the PM API in a truly object

oriented shell. The key features of C_ WINDOW are the use of window message

and command tables, and I hope I have provided sufficiently detailed information.

These features will be crucial in Part III of this book, but we will begin to see tables

used in the classes in this chapter. For example, look at C_TBAR_BUTTON or

C_TOOLBAR class code.

Standard Window Class

At least one window in any application you write for Presentation Manager will

probably be a standard window. A standard window typically has a sizable bor

der, a title bar, and a menu, and acts as the primary interface between your appli

cation and your users.
PMCLASS implements a C_ WINDOW _STD class to account for the fea

tures required to create standard application windows. You will be using most of

the methods in this class, though the class itself will generally be abstract. Most of

the standard windows you create will have their own specific features, so you will

typically derive new classes from C_ WINDOW _STD.

C_ WINDOW _STD is shown graphically in Figure 6-4.

C_ WINDOW _STD

char * szClassName C_ WINOOW _STD()

ULONG lFrameFlags void Create()

void GetSizePosition()

void SetSizePosition()

void SetPosition()

void SetSize()

void SetTitle()

void GetTitle()

void WCF _Standard()

void WCF_Icon()

void WCF _SysMenu()

PM CLASS LIBRARY I CHAPTER 6

C_ WINDOW STD (Continued)

void WCF_Menu()

void WCF _MinButton()

void WCF _MaxButton()

void WCF _TitleBar()

void WCF _Border()

void WCF _DialogBorder()

void WCF _SizingBorder()

void WCF _TaskList()

void WCF _ShellPosition()

virtual void * MsgPaint()

Figure 6-4 C_WINDOW_STD class

The header file for C_ WINDOW _STD is shown in Listing 6-3:

class C WINDOW STD public C_WINDOW
{ - -

private:
char
UL ONG

*szClassName;
1 Frame Flags;

public:
_Export
_Export
void
void

C_WINDOW_STD(void);
C_WINDOW_STD(T_MSG_TABLE *pxtMsg);

_Export Create(int iID, char *szTitle);

_Export GetSizePosition(int *piX, int *piY,

void
void
void
void
void
void
void

void
void
void
void
void
void
void
void
void

_Export
_Export
_Export
_Export
_Export
_Export
_Export

. . int *piW, int *pil);
GetS1ze(int *piX, int *piY);
GetPosition(int *piW, int *pil);

SetSizePosition(int iX, int ;y, int ;ex, int
SetPosition(int ;x, int iY);
SetSize(int ;ex, int ;cv) ;
SetTitle(char *szTitle);
GetTitle(char *szTitle, int ilength);

_Export WCF_Standard(void);
_Export WCF_Icon(void);
_Export WCF_SysMenu(void);
_Export WCF_Menu(void);
_Export WCF_MinButton(void);
_Export WCF_MaxButton(void);
_Export WCF_TitleBar(void);
_Export WCF_Border(void);
_Export WCF_DialogBorder(void);

STANDARD WINDOW CLASS

iCY) ;

127

128

void
void
void

Export WCF SizingBorder(void);
-Export WCF-TaskList(void);
=Export WCF=ShellPosition(void);

II Window Message Handlers
virtual void* Export MsgPaint(void *mpl, void *mp2);

} ;

Listing 6·3 WINSTD.HPP- Class definition for C_WINDOW_STD

C_ WINOOW _STD implements two constructors. Like many of the classes
in the PMCLASS library, its first constructor is the void constructor code, which
actually does very little; however, it is included to simplify debugging later.

The first constructor defaults the window style word to FCF _SHELL
POSITION, which prompts the Presentation Manager to size and position the win
dow automatically when it is created.

11-------------
11 Constructor\
11---
11
II Description: II This is the void constructor for the C_WINDOW_STD class. It defaults
II the created window style word to FCF_SHELLPOSITION.
II
11 Parameters:
11 none
II
C_WINDOW_STD::C_WINDOW_STD(void) C_WINDOW()
{

lFrameFlags = FCF_SHELLPOSITION;

The second constructor is the one that you will use most often when inter
facing to your own code. This constructor accepts a pointer to a P~CLASS mes
sage table, which it relays to the C_ WINOOW base class. This constructor
initializes the window style word to zero, since it requires one or more of the
WCF _ methods to be called before the window is displayed.

11-------------
11 Constructor\
11---
11
II Description: II This constructor for the C_WINDOW_STD class accepts a pointer to a
II message table and sets up the message handler for the instance.
II It defaults the created window style word to O.

PM CLASS LIBRARY I CHAPTER 6

II
/I Parameters:
II pxtMsg - Pointer to window message table
II
C_WINDOW_STD::C_WINDOW_STD(T_MSG_TABLE *pxtMsg) : C_WINDOW(pxtMsg)
{

lFrameFlags = O;

The C_ WINDOW _STD class references something referred to previously as
the "wind~w style word." This attribute is passed into the style parameter of the
PM API WmCreateStdWindow() function in order to attach certain characteristics
to a window. ~or example, a window may have a title or a system menu, or you
may w~t ~o display a window of a fixed size and prevent the user from resizing
or movmg 1t.

PMCLASS implements several WCF _ methods to select the various win
do~ embellishments individually. The first of these methods is WFC_Standard().
This method creates a standard default window with a title bar minimize and
maximize buttons, a system menu and an application menu, and ~plements a siz
able border.

For most purposes, this is the method you will want to invoke when creat
ing an application window.

11----------------
11 WCF_Standard() \
11---11
11 Description:
II This method adds the standard window style to the style word.
II
11 Parameters:
11 void
II
11 Returns:
11 void
II
void C_WINDOW_STD::WCF Standard(void
{ -

lFrameFlags I= FCF_STANDARD;

. If you are not using the WFC_Standard() method, then you can choose the
wmdo~ characteristics individually. WFC_SysMenu() enables the system menu
button m the upper left comer of the window.

STANDARD WINDOW CLASS 129

130

11---------------
11 WCF_SysMenu() \
11---
11
11 Description: II This method adds the system menu window style to the style word.

II
I I Parameters:
II void
II
11 Returns:
II void
II
void C WINDOW_STD::WCF_SysMenu(void)
{

lFrameFlags I= FCF_SYSMENU;

To implement a program icon for your wind~w, call the W~F _Icon()
method. This replaces the system menu button with a rrucro-representati~n o~ the
program icon in the program's resource file and also displays a normal-sized icon
when the program is minimized. . .

The resource file must have an icon defined with the same resource identi-
fier as the window, or the creation of the window will fail.

11------------
11 WCF Icon() \
11----:--
11
11 Description:
II This method adds the program icon style to the s~yle word.
II PM assumes that there will be an icon r:sour:e wit~ the same
II id number as the window or window creation will fail.
II
11 Parameters:
II void
II
11 Returns:
II void
II
void C_WINDOW_STD::WCF_Icon(void)
{

lFrameFlags I= FCF_ICON;

PM CLASS LIBRARY I CHAPTER 6

To implement an application menu, call the WCF _Menu() method. This
assumes that a menu with the same resource identifier as the window exists in the
resource file. If the menu does not exist, window creation will fail.

This method also adds FCF _ACCELTABLE to the window style word. This
indicates the menu has an associated keyboard accelerator table. This table must
also have the same resource identifier as the application window that owns it.

11------------
11 WCF_Menu() \
11---
11
II Description:
II This method adds the program menu style to the style word. The PM window
II handler assumes that there will be menu and accelerator resources with
II the same id number as the window or the window creation will fail.
II
11 Parameters:
11 void
II
11 Returns:
11 void
II
void C_WINDOW_STD::WCF_Menu(void)
{

lFrameFlags I= (FCF_MENU I FCF_ACCELTABLE);

To add a minimize button to the upper right corner of the window, call the
WCF _MinButton().

11-----------------
11 WCF MinButton() \
11----:--
ll
II Description:
II This method adds a minimize button to the window.
II
11 Parameters:
11 void
II
11 Returns:
II void
II
void C WINDOW STD::WCF MinButton(void)
{ - - -

lFrameFlags I= FCF MINBUTTON;
} -

STANDARD WINDOW CLASS 131

Calling the WCF _MaxButton() method adds a maximize button to the

upper right comer of the application window, beside the minimize button.

11-----------------
11 WCF_MaxButton() \
11---
11
II Description:
II This method adds a maximize button to the window.

II
11 Parameters:
II void
II
11 Returns:
11 void
II
void C_WINDOW_STD::WCF_MaxButton(void)
{

lFrameFlags I= FCF_MAXBUTTON;

Most applications need a title bar so users can distinguish one application

from another. The WCF_TitleBar() method causes the title bar to be shown when

the application window is displayed. Note that use of the system menu button,

icon, or minimize/maximize buttons necessitates the use of a title bar, so you may

be required to call WCF _TitleBar() as part of the window setup.

11----------------
11 WCF_TitleBar() \
11---
11
11 Description:
II This method adds a title bar to the window.

II
I I Parameters:
11 void
II
11 Returns:
II void
II
void C_WINDOW_STD::WCF_TitleBar(void)
{

lFrameFlags I= FCF_TITLEBAR;

PM CLASS LIBRARY I CHAPTER 6

Three types of borders can be assigned to an application window. The first

border type is a simple thin border that cannot be resized. This border is of limited

use for applications windows; nevertheless, it has been implemented because it is

supported by Presentation Manager. To add this type of border to an application
window, call the WCF _Border method.

11--------------
11 WCF_Border() \

11---
11
II Description:
II This method adds a thin-line border to the window.
II
11 Parameters:
II void
II
11 Returns:
II void
II
void C_WINDOW_STD::WCF_Border(void)
{

lFrameFlags I= FCF_BORDER;

The second border type is a thicker border that is also not resizable. This

border is most often observed in dialog window displays, but for some applica

tions this border style may be desirable. To create this style, call the WCF _Dialog
Border() method.

11--------------------
11 WCF_DialogBorder() \

11---11
11 Description:
II This method adds a dialog border to the window.
II
11 Parameters:
11 void
II
II Returns:
11 void
II
void C_WINDOW_STD::WCF_DialogBorder(void)
{

lFrameFlags I= FCF_DLGBORDER;

STANDARD WINDOW CLASS 133

134

The final border type is one that you will most often see implemented for
applications. This is a thicker border that can be resized as desired. A call to
WCF _SizingBorder() adds this border style to an application window.

Note that the three border types are mutually exclusive. No attempt should
be made to specify more than one of these borders for a window, or results will be
unpredictable.

11--------------------
11 WCF_SizingBorder() \
11---
11
II Description:
II This method adds a sizable border to the window.
II
I I Parameters:
11 void
II
II Returns:
II void
II
void C_WINDOW_STD::WCF_SizingBorder(void)
{

lFrameFlags I= FCF_SIZEBORDER;

The OS/2 WorkPlace Shell interface offers a useful feature called the task
list. This is a list of all open windows known to WPS, and offers users the ability to
show or hide windows or to close them completely. You can optionally prevent
your application from showing up in this list, although such action is not recom
mended. A call to WCF_TaskList() causes Presentation Manager to add the title of
the window to the WPS task list.

11----------------
11 WCF_Tasklist() \
11---
11
11 Description:
II This method adds the window to the WPS task list.
II
11 Parameters:
II void
II
11 Returns:
II void
II
void C_WINDOW_STD::WCF_Tasklist(void)
{

PM CLASS LIBRARY I CHAPTER 6

lFrameFlags I= FCF_TASKLIST;

The window can be configured such that, when it is displayed for the first
time, Presentation Manager will place it on the WPS desktop automatically. Both
the initial size and position of the application window are under PM control. If this
is what you wish, then call WCF _ShellPosition() when setting up the window.

Enabling automatic window placement may be undesirable in some situa
tions. If the application preserves its window size and position between sessions,
then the WCF _ShellPosition() method should not be called, otherwise an annoy
ing flicker will result because PM will display the window, and then the applica
tion code will resize and/ or move the window.

11---------------------
11 WCF_ShellPosition() \

11---
11
11 Description:
II This method tells PM to size the window automatically when it is
II created.
II
11 Parameters:
11 void
II
11 Returns:
11 void
II
void C_WINDOW_STD::WCF_ShellPosition(void)
{

lFrameFlags I= FCF_SHELLPOSITION;

With the WCF _methods behind us, let's move on to some of the other capa
bilities of the C_ WINDOW _STD class. The remainder of the methods in the class
deal with setting or detecting window size and position.

The first of these methods is GetSizePosition(). This method returns the
location and dimensions of the application window. Note that the location for an
application window is always relative to the OS/2 desktop with coordinate (0,0)
representing the lower left corner of the window.

11-------------------
11 GetSizePosition() \

11---
11
11 Description:
II This method retrieves the current window size and position relative
II to the WPS desktop.

STANDARD WINDOW CLASS 135

136

II
11 Parameters:
II *piX, *piY - Pointers to a data area to get the X,Y coordinates

- Pointers to a data area to get the window dimensions II *piW,*piL
II
11 Returns:
11 void
11 . . (void C_WINDOW_STD::GetSizePosition int *piX, int *piY, int *piW, int *piL)
{

SWP swp;

II Query PM to get the size and position of the window
WinQueryWindowPos(WinQueryWindow(Window(), QW_PARENT), &swp);

II Format the size and position into a form we can use
*piX = swp.x;
*piY = swp.y;
*piW = swp.cx;
*piL = swp.cy;

The GetPosition() method returns only positional information for the appli
cation window. This data is returned in pixels and is relative to the 0512 desktop.

11---------------
11 GetPosition() \

------------------------11---
II
11 Description: II This method retrieves the current window posit1on relative to the
II WPS desktop.
II
I I Parameters: II *piX, *piY - Pointers to a data area to get the X,Y coordinates
II
11 Returns:
II void
II
void C_WINDOW_STD::GetPosition(int *piX, int *piY}
{

SWP swp;

II Query PM to get the size and position of the window
WinQueryWindowPos(WinQueryWindow(Window(}, QW_PARENT), &swp);

II Format the position into a form we can use
*piX = swp.x;
*piY = swp.y;

PM CL.ASS LIBRARY I CHAPTER 6

The GetSize() method returns a frame window's size in pixels. Note that the
C_WINDOW class implements methods with the same names, but because there
is a distinction between the frame window and the client area window,
C_ WINDOW _STD requires additional methods to interact specifically on the
frame. Rather than create methods with new names, the C_ WINDOW methods are
overloaded. This avoids the confusion of having multiple methods performing the
same function for different types of windows.

If you are planning to port PMCLASS to Windows, or some other graphical
environment, there may be no difference between the client and the frame, so these
extra methods can likely be omitted.

11-----------
11 GetSize() \
11---11
11 Description:
II This method retrieves the current window size.
II
11 Parameters:
II *piW,*piL - Pointers to a data area to get the window dimensions
II
11 Returns:
II void
II
void C_WINDOW_STD::GetSize(int *piW, int *piL)
{

SWP swp;

II Query PM to get the size and position of the window
WinQueryWindowPos(WinQueryWindow(Window(), QW_PARENT), &swp);

II Format the size into a form we can use
*piW = swp.cx;
*piL = swp.cy;

Both the size and position of an application window can be set with a call to
the SetSizePosition() method. This method accepts an X and Y coordinate for the
lower left comer of the window and a width and height for the window.

STANDARD WINDOW CL.ASS 137

138

11-------------------
11 SetSizePosition() \
11---
11
II Description:
II This method sets the current window size and position relative
II to the WPS desktop.
II
I I Parameters:
II iX. iY - The new x. Y coordinates of the window
II iex.;ey - The new dimensions of the window
II
11 Returns:
11 void
II
void e_WINDOW_STD::SetSizePosition(int iX. int iY, int ;ex. int ;ey)
{

II Set the window size and position
WinSetWindowPos(WinQueryWindow(Window(). QW_PARENT). HWND_TOP.

;x. ;v. ;ex. ;ev. swP_MOVE 1 swP_srzE I swP_ZORDER I swP_sHow):

The position may be set independently by calling the SetPosition() method
in the C_ WINDOW _STD class. This position is measured in pixels and is relative
to the 05/2 desktop.

11---------------
11 SetPosition() \
11---
11
II Description:
II This method sets the current window position relative to the WPS
II desktop.
II
11 Parameters:
I I i X. i Y - The new X. Y coordinates of the window
II
11 Returns:
11 void
II
void e_WINDOW_STD::SetPosition(int iX. int iY)
{

II Set the window position
WinSetWindowPos(WinQueryWindow(Window(). QW_PARENT),

HWND_TOP. iX, iY, 0, O. SWP_MOVE);}

PM CLASS LIBRARY I CHAPTER 6

Se~g th~ size of_ a ~ind~w can be achieved with a call to the SetSize()
method. This wmdow size 1s adJUSted according to parameters passed to the
method, leaving the position unchanged.

11-----------
11 SetSize() \

11---
11
II Description:
II This method sets the current size of the window in pixels.
II
11 Parameters:
II ieX,ieY - The new dimensions of the window
II
II Returns:
II void
II
void C_WINDOW_STO::SetSize(int ;ex. int ;ey)
{

II Set the window size
WinSetWindowPos(WinQueryWindow(Window{), QW_PARENT),

HWND_TOP. o. o. ;ex. ieY. SWP_SIZE):

The title shown in the title bar of the application can be set by calling the
SetT~tle(). Though the Presentation Manager window does not specify limits for
the title, I have found empirically that the title is limited to 56 characters.

11------------
11 SetTitle() \

11---
11
II Description:
II This method sets the current window title shown in the title bar.
II
11 Parameters:
II szTitle - Pointer to new title string
II
11 Returns:
11 void
II
void e_WINDOW_STD::SetTitle(char *szTitle)
{

II Show the new window title
WinSetWindowText(ParentWindow(). szTitle);

STANDARD WINDOW CLASS 139

140

The window title can be retrieved by calling the C_ WINOOW _STD method
GetText(). GetText() accepts a pointer to a target character string and a length of the
buffer where the title string will be stored.

11------------
11 GetTitle() \
11---
11
11 Description: . . II This method retrieves the current window title shown in the title bar.
II
11 Parameters:
II szTitle
11 i Length

- Pointer to a data area to get the current title string
- Size of the out buffer in bytes

II
11 Returns:
II void
II
void C_WINDOW_STD::GetTitle(char *szTitle, int ilength)
{

II Get the title from the title bar .
WinQueryWindowText(ParentWindow(), ilength, szTitle);

So far we have looked at many methods for the C_WINOOW_STD class,
but as yet none of the methods described actually creates the w_indow. !h~ Create()
method does this by calling the WinCreateStdWindow() function, which is part of
the Presentation Manager APL .

Create() accepts a window resource identifier and a pointer to a null termi
nated title string. As I mentioned previously, the window identifier is also used to
control the display of a window icon, system menus, and keyboard accelerator
table, and can be an integer of any size.

11----------
11 Create() \
11---
11
II Description: . . II This method performs the actual window creation by calling the PM API
II WinCreateStdWindow(). It creates a window using the parameters
II specified by the caller.
II
11 Parameters:
11 i ID
II szTitle

- Window ID for the new window
- Title string for the window

II

PM CLASS LIBRARY I CHAPTER 6

11 Returns:
II void
II
void C_WINDOW_STD::Create(int iID, char *szTitle)
{

HWND hFrameWnd;
HWND hWnd;

II Create a new standard window
hFrameWnd = WinCreateStdWindow(HWND_DESKTOP, 0, &lFrameFlags,

ClassName(), szTitle, 0, (HMODULE)NULL, ilD, &hWnd);

II Associate the client window with the frame
C_WINDOW::Create(hFrameWnd, hWnd);

Virtually every standard application window that you will ever create will
need to perform some sort of default painting operation to paint its client area.
When I started building 05/2 applications, I noticed that the code to process the
WM_PAINT message was the same for every application window. When I made
the shift to C++, I decided that the plan for PMCLASS should include a default
paint handler so I didn't have to keep reproducing the same code.

The MsgPaint() method in C_WINOOW_STD is a virtual method that
accomplishes this. In the rare event that a new paint handler is required, this one
can be overridden using the capabilities of the compiler. To invoke this method to
handle WM_PAINT messages in child windows, add the following line to any
message tables.

DECLARE_MSG(WM_PAINT, C_WINDOW_STD::MsgPaint)

MsgPaint() calls the WinBeginPaint() and WinEndPaint() APls as required
by PM, and in between these calls, acquires the dimensions of the client area rect
angle and paints it a neutral color (typically button gray).

11----------
11 MsgPaint \
11---11 Event: WM PAINT
II Cause: Issued by the OS when the window needs to be redrawn
II Description: This method is so co11111only used that it has been provided
II at this level in the code to avoid having to recode it for
II each application window.
II
void *C_WINDOW_STD::MsgPaint(void *mpl, void *mp2)
{

HPS hps;
RECTL re;

STANDARD WINDOW CLASS 141

142

hps = WinBeginPaint(Window(), OL, &re);

WinFillRect(hps, &re, SYSCLR_APPWORKSPACE);
GpiSetColor(hps, CLR_NEUTRAL);

WinEndPaint(hps);

return FALSE;

Child Window Class

Child windows include all the embellishments used in GUI programming, includ
ing toolbars, buttons, list boxes, etc., all modified forms of basic windows. Most of
the remaining classes in this chapter are derived from the C_WINDOW_CHILD
class.

The abstract C_WINDOW_CHILD class is actually fairly small, primarily
consisting of overridden methods defined in the C_ WINDOW parent class. Under
normal circumstances you will not be much interested in the contents of this class,
but you may derive your own child objects, so for that reason I will describe it.

C_ WINDOW _CHILD

C_WINOOW "pxcParent C_WINOOW_CHILD()

void ParentObject()

C_ WINOOW "ParentObject()

void Create()

void SetSizePosition()

void SetPosition()

void SetSize()

Figure 6·5 C_WINDOW_CHILD class

The header file for C_ WINDOW_ CHILD is shown in Listing 6-4:

class C_WINDOW_CHILD public C_WINDOW
{

private:
C WINDOW

public:
Export
Export

_Export

*pxcParent; II Pointer to parent window

C WINDOW CHILD(void);
C-WINDOW-CHILD(T MSG TABLE *pxtMsg);
C=WINDOW=CHILD(C=WINDOW *pxcParentObj, T_MSG_TABLE *pxtMsg);

PM CLASS LIBRARY I CHAPTER 6

void _Export
void _Export

void _Export
void _Export
void _Export

ParentObject(C_WINDOW *pxcParentObj);
Create(int iID, int iMode, char *szTitle,

int i X, int i Y, int i CX, int i CY) ;
SetSizePosition(int iX, int iY, int iCX, int iCY);
SetPosition(int iX, int iY);
SetSize(int iCX, int iCY) ;

C_WINDOW * _Export ParentObject(void);
};

Listing 6·4 WINCHILD.HPP- Class definition for C_WINDOW_CHILD

There are three constructors for the C_ WINDOW_ CHILD class. The first of
these is the default constructor, which will be of marginal use unless you are
debugging and want to embed debugging statements here.

11-------------
11 Constructor \

11---
11
II Description:
II This is the void constructor for the C WINDOW CHILD class. It does
II nothing, but has been placed here for debugging purposes.
II
11 Parameters:
11 none
II
C WINDOW CHILD::C WINDOW CHILD(void) C_WINDOW() r - - -
}

The second constructor accepts a pointer to a message table, which it relays
to the C_ WINDOW parent. Like the previous constructor, you can embed debug
ging statements into the body if you wish.

11-------------
11 Constructor\

11---11
II Description:
II This is the void constructor for the C WINDOW CHILD class. It
II accepts a pointer to a message table and passes this to the
II C_WINDOW constructor which is its parent.
II
II Parameters:
II pxtMsg - Pointer to window message table
II

CHILD WINDOW CLASS 143

144

C_WINDOW_CHILD::C_WINDOW_CHILD(T_MSG_TABLE *pxtMsg) C_WINDOW(pxtMsg)
{
}

The final constructor is the one that will be used most often. It accepts a
pointer to an owner object as well as a pointer to a message table for the object. It
sets the parent object attribute in the class equal to the owner window, so any of
the class methods can access this information.

/!-------------
// Constructor \
//---
//
// Description:
// This is the void constructor for the C_WINDOW_CHILD class. It

II
II
II
II

accepts a pointer to a message table and passes this to the
C WINDOW constructor which is its parent. The constructor also
accepts a pointer to a parent/owner object window.

// Parameters:
// pxcParentObj - Pointer to parent window object
/I pxtMsg - Pointer to window message table

II
C WINDOW CHILD::C WINDOW CHILD(C WINDOW *pxcParentObj, T MSG TABLE *pxtMsg)
- - - - - : C_WINDOW(p~tMsg)

ParentObject(pxcParentObj);

The child window needs to keep track of who created it. The ParentObject{)
method accepts a pointer to a window and sets the internal class attribute for the
owner window accordingly.

/1----------------
11 ParentObject() \

//---
//
II Description:
// This method sets the parent object attribute within the class. This
// attribute is referenced by many of the other methods within the class.

II
//Parameters:
// pxcParentObj - Pointer to parent window object

II
//Returns:
// void
II

PM CLASS LIBRARY I CHAPTER 6

void C_WINDOW_CHILD::ParentObject(C_WINDOW *pxcParentObj
{

pxcParent = pxcParentObj;

Methods in ~-WINDOW_CIDLD or its derivative classes may need to
access the owner wmdow data. The second ParentObject() method accepts no
parameters and returns a pointer to the owner window.

//----------------
// ParentObject() \

//---
//
//Description:
// This method queries the class attribute area and returns a pointer
// to the parent object of this instance's window.
II
// Parameters:
/I void
II
I/ Returns:
// C_WINDOW * - Returns pointer to parent window object
II
C_WINDOW *C_WINDOW_CHILD::ParentObject(void)
{

return pxcParent;

Although an instance of C_WINDOW_CIDLD may be created the actual
visual wind.ow has no.t yet been made. The Create{) method places ; call to the
standard WmCreateWmdow() API function to create the window, and then calls
the Create() method from the C_WINDOW parent class to associate the parent
widow with this instance.

//---------
// Create() \

11---
1/
//Description:
II This method performs the actual window creation by calling the PM API
II WinCreateWindow(). It creates a window using the parameters specified
II by the caller.
II
// Parameters:
II iID
II
II

iMode
szTitle

CHILD WINDOW CLASS

- Window ID for the new window
- OS specific parameters for the window creation
- Title string for the window

145

146

II
II
II

iX, i Y
iCX,iCY

11 Returns:

- X,Y coordinates for the new window relative to owner
- Width and height of the window in pels

II void
II
void C_WINDOW_CHILD::Create(int iID, int iMode, char *szTitle,

int iX, int iY, int iCX, int iCY)

HWND hWnd;

II Create a new child window using the parameters specified
hWnd = WinCreateWindow(ParentObject()->Window(), ClassName{), szTitle,

iMode, iX, iY, iCX, iCY, ParentObject()->Window(),
HWND_TOP, iID, 0, 0);

II Call the parent create to associate the new window with the parent
C WINDOW::Create(ParentObject()->Window(), hWnd);

Child windows created dynamically (i.e., not within a dialog resource) may
need to be resized or repositioned within the owner window's client area. The Set
SizePosition() method accepts an X,Y coordinate and a width and height from the
caller and performs both of these tasks. It places ~ call to the st~~ard P~ API
function WinSetWindowPos(), but hides this operating system specific functional-
ity from PMCLASS-based programs.

11-------------------
11 SetSizePosition() \
11---
11
11 Description: II This method accepts new X,Y and width, height and sets the size and
II position of the window accordingly.
II
I I Parameters:
II iX,iY
II iCX,iCY

- X,Y coordinates for the window relative to owner
- Width and height of the window in pels

II
11 Returns:
II void
II
void C_WINDOW_CHILD::SetSizePosition(int iX, int iY, int iCX, int iCY)
{

WinSetWindowPos(Window(), HWND_TOP,
iX, iY, iCX, iCY, SWP_MOVE I SWP SIZE SWP ZORDER SWP_SHOW);

PM CLASS LIBRARY I CHAPTER 6

The SetPosition() method is almost identical in nature to the previous
method; however, only the position of the child window is changed.

11---------------
11 SetPosition() \
11---11
II Description:
II This method accepts new X,Y and sets the position of the window II accordingly.
II
11 Parameters:
II iX,iY - X,Y coordinates for the window relative to owner
II
II Returns:
II void
II
void C_WINDOW_CHILD::SetPosition(int iX, int iY)
{

WinSetWindowPos(Window{), HWND_TOP, iX, iY, 0, 0, SWP_MOVE);

The SetSize() method changes only the size and leaves the position intact. It
should be noted that all dimensions for SetSizePosition(), SetPosition(), and Set
Size() are in pixels and are relative to the owner window. For example, an X,Y coor
dinate of (0,0) positions the child window in the bottom left comer of the owner
window's client area.

11-----------
11 SetSize() \
11---11
II Description:
II This method accepts a new width, height and sets the size of the II window accordingly.
II
11 Parameters:
II iCX,iCY - Width and height of the window in pels
II
11 Returns:
II void
II
void C_WINDOW_CHILD::SetSize(int iCX, int iCY)
{

WinSetWindowPos(Window(), HWND_TOP, 0, 0, iCX, iCY, SWP_SIZE);

CHILD WINDOW CLASS
147

148

Dialog Class

Dialog boxes are a fundamental part of every graphical user interface. These win

dows are normally created using a resource editor to create the entire dialog win

dow as it will appear in the finished application, including the creation of various

embellishments such as text strings, edit fields, and list boxes.
Since dialogs play such a key role, PMCLASS needs to address the issue of

attaching an object to a dialog. The C_DIALOG class implements this capability of

attaching C++ classes directly to dialog resources. The diagram shown in Figure 6-

6 illustrates the class definition for C_DIALOG.

C_DIALOG

C_DIALOG()

void Create()

ULONG Process()

void Close()

void "DialogProc()

Figure 6·6 C_DIALOG class

The header file for C_DIALOG is shown in Listing 6-5:

class C DIALOG
{

};

public:
_Export
void
ULONG
void
void *

public C_WINDOW_CHILD

C_DIALOG(C_WINDOW *pxcParentObj, T_MSG_TABLE *pxtMsg);
_Export
_Export
_Export
_Export

Create(int iID };
Process(void};
Close (int i Flag) ;
DialogProc(ULONG lMsg, void *mpl, void *mp2 };

Listing 6·5 DIALOG.H PP - Class definition for C_DIALOG

C_DIALOG provides a single constructor, which is used to supply pointers

to the parent/ owner object and a pointer to the message table used to process win

dow messages for the dialog.

11-------------
11 Constructor \
11---
11
II Description:
II This constructor creates an instance of the C_DIALOG class. It

PM CLASS LIBRARY I CHAPTER 6

II
II
II

accepts a pointer to a parent window object and a pointer to a
message table and passes both of these to its parent constructor.

11 Parameters:
II pxcParentObj - Pointer to owner object window
II pxtMsg - Pointer to message table for this class
II
C_DIALOG::C_DIALOG(C_WINDOW *pxcParentObj, T_MSG_TABLE *pxtMsg) :

C_WINDOW_CHILD(pxcParentObj, pxtMsg)

The constructor does not actually associate a dialog resource with the

object. T~ acc~~plish this, the. Create .method must be called. Create() accepts a
resource identifier that determines which dialog will be loaded from the resource
section of the EXE file.

Once the dialog is loaded into memory, the owner window attribute is set
within the object. This is the object that was specified in the constructor.

11--------
11 Create\

11---
11
II Description:
II This method is used to create the window associated with this
II instance. It first loads the dialog resource from the resource
II section of the EXE, then calls the C WINDOW::Create() method to
II associate the object with its parent-window. The owner of the
II dialog window is set to the WPS desktop.
11 Parameters:
II iID - Resource identifier of the dialog
II
11 Returns:
II void
II
void C_DIALOG::Create(int iID)
{

HWND hWnd;

II Load the dialog box into memory
hWnd = WinLoadDlg(HWND_DESKTOP, ParentObject()->Window(},

StdDlgProc, 0, ilD, this };

II Tell the C_WINDOW portion of the code about the dialog
C_WINDOW::Create(ParentObject()->Window(), hWnd);

DIALOG CLASS 149

150

The C_DIALOG class provides a second, more specific way to create a dia
log. The CreateWithParent() method does not default the window owner to
HWND_DESKTOP, as Create() does. Instead, the parent window is specified with
the same parameter as the owner, ParentObject()->Window().

This method is particularly useful in certain situations. For example, if you
are creating a notebook control and inserting pages, each page (a dialog resource)
must be owned by the notebook window rather than the desktop, or operation of
the notebook will be unpredictable at best.

11------------------
11 CreateWithParent \
11---
11
11 Description:
II This method is used to create the window associated with this
II instance. It first loads the dialog resource from the resource
II section of the EXE, then calls the C WINDOW::Create() method to
II associate the object with its owner ;indow. Both the parent and
II owner of this dialog window are set to the parent window.
II
II
II
II
II

This creation technique is used when the dialog requires an owner
window that is not the WPS desktop. For example, a notebook dialog
page must be owned by the notebook control.

I I Parameters:
11 i ID - Resource identifier of the dialog
II
11 Returns:
II void
II
void C_DIALOG::CreateWithParent(int iID)
{

HWND hWnd;

II Load the dialog box into memory
hWnd = WinLoadDlg(ParentObject()->Window(), ParentObject()->Window(),

StdDlgProc, 0, ilD, this);

II Tell the C_WINDOW portion of the code about the dialog
C_WINDOW::Create(ParentObject()->Window(), hWnd);

To execute the dialog code the Process() method needs to be executed. This
method is a simple code wrapper to isolate the application code from the native
OSl2 APL Once this method is called, execution in the current thread shifts to the
dialog code and will not return until the dialog is dismissed.

PM CLASS LIBRARY I CHAPTER 6

11---------
11 Process \

11---
11
II Description:
II This method is a simple wrapper that calls the standard API
II function to process the dialog box.
II
11 Parameters:
II none
II
11 Returns:
II void
II
ULONG C_DIALOG::Process(void)
{

II Process the dialog box
return WinProcessDlg(Window() };

Dialog windo~s can be clo~ed an~ their resources reallocated by calling the
Close() method. This method will typICally be called in the application code
resp~nsible f~r the "Cancel" or "OK" buttons within dialogs. Any message han
dler mt~rcepting the WM_ CLOSE message should call this method as part of its
processmg.

11-------
11 Close \

11---
11
11 Description:
II This method is called to close the window and dispose of any system
II resources it is using.
II
11 Parameters:
II flag - Set TRUE or FALSE to pass to the Dismiss API function.
II
11 Returns:
II void
II
void C_DIALOG::Close(int iFlag)
{

II Prevent class from processing further messages
WinSetWindowULong(Window(), 0, (ULONG)O);

II Get rid of the dialog
WinDismissDlg(Window(}, iFlag);

DIALOG CLASS 151

152

We discussed the message handler code for the C_ WINOOW class earlier.
C_DIALOG also provides a method to manage processing window messages;
however, where C_DIALOG differs is in how it deals with messages that the han
dler does not process. In the standard 0512 API, dialog messages that are not pro
cessed are sent to the WinDefDlgProc() routine instead of WinDefWindowProc().

PMCLASS invokes the DialogProc() method anytime a message is sent to
the dialog window. DialogProc() scans the message list supplied when the
instance was created and, using a simple look-up table mechanism, invokes the
correct class method to process the message. Any messages that are not processed
are automatically sent to the default message handler in the PM API.

Like the message handler for C_ WINOOW, DialogProc() detects
WM_ COMMAND messages and calls a class method for any command messages
that have been specified during the object construction process.

11------------
11 DialogProc \
11---
11
11 Description:
II This method is the main window message manager for the window.
II It accepts a message and two optional parameters and compares the
II supplied message to those stored in the dialogs message table. If a
II message match is found the appropriate message handler is invoked.

II
11 Parameters:
11 lMsg - Message passed to the dialog window
II mpl - Pointer to first optional parameter
II mp2 - Pointer to second optional parameter

II
11 Returns:
II Result of command or default handler result.
II
void *C_DIALOG::DialogProc(ULONG lMsg, void *mpl, void *mp2)
{

int iCtr;
int iCmdCtr;
void *(C_WINDOW::*Function)(void*, void*);

iCtr = O;
while((pxtMsgTable+iCtr)->lMsg)
{

II If this is a WM_COMMAND message, see if the window has defined
II a command table
if(lMsg == WM_COMMAND && pxtCommandTable)
{

II Scan the window's command table for the command
iCmdCtr = O;

PM CLASS LIBRARY I CHAPTER 6

while((pxtCommandTable+iCmdCtr)->lMsg)
{

II Did we find a command match
if((pxtCommandTable+iCmdCtr)->lMsg == COMMANDMSG(&lMsg)->cmd)
{

II Process the window command by calling the correct
II processor
Function = (pxtCommandTable+iCmdCtr)->Function;
return (this->*Function)(mpl, mp2);

iCmdCtr++;

if((pxtMsgTable+iCtr)->lMsg == lMsg)
{

Function = (pxtMsgTable+iCtr)->Function;
return (this->*Function)(mpl, mp2);

iCtr++;

return WinDefDlgProc(Window(), lMsg , mpl, mp2);

The StdDlgProcq proce~ure is ~ot a member of the C_DIALOG class, yet
the class depends heavily on this function to implement an interface between the
C world of the PM API and the C++ world of PMCLASS.

.. StdDlgProc is re~ponsible for ~rocessing window messages for a dialog
until its C_DIALOG obJect has been instantiated and initialized. It also has the
responsibili!Y of detectin? the WM_INITDLG message sent by Presentation Man
ag7r when it cn:ates. a dialo~ window. When this occurs, StdDlgProc() stores a
pointer to the obJect instance m the first window word in the window's user area
m order to permit access to the instance data while processing messages. '

Once the ~bject has been completely constructed, StdDlgProc passes all
messages to the DialogProc method described previously. Before this, all messages
are passed to the default window handler in the PM API.

11------------
11 StdDlgProc \

jj---
11 Description:
II Function acts as the interface between the PM C API interface
II and the C++ class interface used by the PMCLASS library. Once the

DIALOG CLASS 153

154

II
II
II
II

. tance has been created, all message processing passes to the
~:~dler method within the object. If the window instance has not
yet been created the PM default interface manages the message.

11 Parameters:
- Resource identifier of the dialog 11 i ID

II
II Returns:
11 void
II
MRESULT EXPENTRY StdDlgProc(HWND hWnd, ULONG lMsg, MPARAM mpl, MPARAM mp2)
{

C DIALOG *pxcThis;

II If we are initializing the window
if(lMsg == WM_INITDLG)
{

II Get a pointer to the instance
pxcThis = (C_DIALOG *)mp2;

it II Save the instance pointer so the clas~ methods can access
WinSetWindowULong(hWnd, 0, (ULONG)pxcTh1s);

II Get a pointer to this instance
pxcThis = (C_DIALOG *)WinQueryWindowULong(hWnd, 0);

d th let its handler method II if this instance has be co~structe , en
II look after message processing
if(pxcThis && pxcThis->Window()) .

return pxcThis->DialogProc(lMsg, mpl, mp2),

II The object hasn't been created yet so we have to let PM handle
II all the messages
return WinDefDlgProc(hWnd, lMsg , mpl, mp2);

Push Button Class
a hical user interfaces support controls that mimic push b~ttons. These

Most grl p typ" ally fairly simple in design-in the case of Presentation Manager, contro s are 1c MMAND a e a button control clicked by the user generates a WM_CO . mess g · API
The PMCLASS library supports buttons as pa~t of its wrap of the PM_ . .

Th C PUSHBUTTON control shown in Figure 6-7 illustrates a class contam:g on~ a ~onstructor with no other methods and no attribute data, a testament to e
simplicity of this class.

PM CLASS LIBRARY I CHAPTER 6

C_PUSHBUTION

I C_PUSHBUTION()

Figure 6·7 C_PUSHBUTION class

The header file for C_PUSH_BUTION is shown in Listing 6-6:

class C_PUSHBUTTON : public C_WINDOW_CHILD
{

};

public:
_Export

_Export

C PUSHBUTTON(C WINDOW *pxcParentObj, int iID,
- - int iMode, char *szText);

C_PUSHBUTTON(C_DIALOG *pxcParentObj, int iID);

Listing 6·6 PUSHBTN.HPP- Class definition for C_PUSHBUTION

The C_PUSHBUTION class contains two constructors. The first accepts a
pointer to an owner window and a window, which is fairly typical of PMCLASS
classes. It also accepts a mode parameter to add any additional operating system
specific configuration for the button control. The final parameter accepted by this
constructor is the text that will be displayed on the button face when it is created.

11-------------
11 Constructor \
11---11
II Description:
II
11 Parameters:
II pxcParentObj
11 i ID
II iMode
II
II

szText

- Pointer to owner object window
- Button window identifier
- Additional OS specific parameters
- Text used for the button face

C PUSHBUTTON::C PUSHBUTTON(C WINDOW *pxcParentObj, int iID, int iMode,
- - char *szText) : C_WINDOW_CHILD(pxcParentObj, 0)

ClassName(WC BUTTON);
Create(iID, WS_VISIBLE I BS_PUSHBUTTON I iMode, szText, 0, 0, 90, 30);

The second C_PUSHBUTION constructor is used for referencing buttons
defined within dialog boxes. This code does not accept the text or mode parame
ters, since all configuration for the button is determined by the dialog.

PUSH BUTION CLASS 155

156

11-------------
11 Constructor\ ------------------11---
II
II Description:
II
I I Parameters:
II pxcParentObj - Pointer to owner object window
II iID - Push button window identifier

~IPUSHBUTTON::C PUSHBUTTON(C DIALOG *pxcParentObj , int iID) .
- - C_WINDOW_CHILD((C_WINDOW *)pxcParentObJ, 0)

ClassName(WC_BUTTON);

II The window was created by the dialog system, so all we need to
II do is call our parent Create().
c WINDOW::Create(ParentObject()->Window(),

WinWindowFromID(ParentObject()->Window(), iID));

List Box Class

Almost every program written with a graphical user interface need~ to display
information in a list form, permitting users to select one or more data items. Thes.e
list boxes are supported by virtually every graphical user interface, :u'd are ~1-
cally one of the easier controls for a developer to use. The basic functions ~~quired
for a list box are adding and removing items, and perhaps a search ~apability.

The PMCLASS library implements a C_LISTBOX class, which wra~~ ~e
functionality found in the 0512 API, as well as Windows. The basic class definition
for the C LISTBOX class is shown in Figure 6-8, as follows.

C LISTBOX

C_LISTBOX()

void Insert()

void Delete()

void DeleteAll()

void Select()

int Selection()

int Item Count()

void Item Text()

Figure 6·8 C_LISTBOX class

PM CLASS LIBRARY I CHAPTER 6

The header file for C_LISTBOX is shown in Listing 6-7:

class C LISTBOX public C_WINDOW_CHILD
{

);

public:
_Export C_LISTBOX(C_WINDOW *pxcParentObj, int iID, int iMode);
_Export C_LISTBOX(C_WINDOW *pxcParentObj, int iID);
_Export C_LISTBOX(C_DIALOG *pxcParentObj, int iID);
void _Export Insert(char *szText, int iHow);
void _Export Delete(int iltem);
void _Export DeleteAll (void);
void _Export Select(int iltem, BOOL bBoolean);
int _Export Selection(int iFrom);
int _Export ItemCount(void);
void _Export ItemText(int ilndex, char *szString, int iBufferSize);

11----------------------------------
11 ListBox Insert() iHow parameters \
11---
#define LB INSERT END - -
#define LB_INSERT_SORTA
#define LB_ INSERT_ SORTO

LIT END II Insert at end of list
LIT_SORTASCENDING II Insert in ascending order
LIT_SORTDESCENDING II Insert in descending order

11--------------------------------------
11 ListBox Selection() iFrom parameters \
11---
#define LB_SELECT_FIRST LIT_FIRST II Start at first item

Listing 6·7 LISTBOX.HPP - Class definition for C_LISTBOX

C_LISTBOX implements three constructors; the first two are used for
dynamic creation during the execution of a program. The first constructor accepts
a pointer to a parent/ owner window, and a list box control window identifier.

There is also a third parameter in this constructor, which can be used to
specify any additional operating system specific configuration parameters for the
list box control. These parameters can include such things as the sort order, the
selection method (single or multiple items), etc.

The following table summarizes some of the more common list box modes
supported by Presentation Manager.

LS_HORZSCROLL

LS_MULTIPLESEL

LIST Box CLASS

The list box control enables the user to scroll the list box
horizontally with the attached scrollbar.

The list box control enables the operator to select more
than one item at any one time.

157

158

LS_EXTENDEDSEL

LS_NOADJUSTPOS

11-------------
11 Constructor\

This style is specified to permit extended selection from
the user. It is a variant of multiple selection.

This style causes the list box control to be drawn at the
size specified. Without this parameter, list boxes will be
automatically sized so that no items will be clipped at
the top or bottom of the list box.

11---
11
II Description : .
II This constructor creates an instance of the C_STATUS .class. It is
II used for dynamic list box creation, and ac~e~ts a point~r t~ a parent
II window object, and a list box window identifier. The third iMode . .
II parameter is used to supply any additional operating system specific
II parameters for the list box control.
II
11 Parameters:
II pxcParentObj
11 i ID

iMode

- Pointer to owner object window
- List box window identifier
- Additional OS specifi c list box parameters II

II
C_LISTBOX::C_LISTBOX(C WINDOW *pxcParentObj, int iID, int iMode)

- C WINDOW_CHILD(pxcParentObj, 0)

ClassName(WC LISTBOX };
Create(i ID, iMode, 11 11 0, 0, 90, 30) ;

The second constructor is similar to the first, except that it configures the list
box control so that a mode parameter is not needed. Using this constructor, the list
box is created in a visible state by default.

11-------------
11 Constructor\
11---
11
II Description: .
II This constructor creates an instance of the C_STATUS.class. It is
II used for dynamic list box creation, and accepts a p~inter to a parent
II window object, and a list box window identif~er. This . constru~t
II defaults the control to be visible and doesn tallow it to adJust
II its pos i tion automatically.
II

PM CLASS LIBRARY I CHAPTER 6

11 Parameters:
II pxcParentObj - Pointer to owner object window
II iID - List box window identifier
II
C LISTBOX::C LISTBOX(C WINDOW *pxcParentObj, int iID)
- - - C_WINDOW_CHILD(pxcParentObj, 0)

ClassName(WC_LISTBOX };
Create(iID, WS VISIBLE I LS_NOADJUSTPOS, II II

• 0. 0' 90' 30) ;

The final constructor for the C_LISTBOX class is used when the list box is
part of a dialog box resource. The caller specifies an owner window that is a
C_DIALOG object and an identifier for the list box control within the dialog. All
configuration of the list box is specified at compile time using a resource editor.

11-------------
11 Constructor\
11---
11
II Description:
II This constructor creates an instance of the C_STATUS class. It is
II used for creation of a list box that is already part of a dialog
II resource. Any modes for the list box are supplied by the dialog
II resource when it is loaded.
II
II
II Parameters:
II pxcParentObj
11 i ID
II

- Pointer to owner object window
- List box window identifier

C_LISTBOX::C_LISTBOX(C_DIALOG *pxcParentObj, int iID)
C_WINDOW_CHILD((C_WINDOW *}pxcParentObj, 0)

ClassName(WC_LISTBOX);

II The window was created by the dialog system, so all we need to
II do is call our parent Create().
C_WINDOW::Create(ParentObject()->Window(),

WinWindowFromID(ParentObject()->Window(), iID) };

To add items to a list box object, C_LISTBOX provides an Insert() class. This
accepts an operating system specific parameter used to determine how the item
will be inserted. For example, an item can be added to the beginning of the list or
the end, or can be placed at an absolute location within the list. The second param
eter required for the Insert() method is the list text itself. This is specified exactly as
it will appear when the list box is displayed.

LIST Box CLASS 159

11--------
11 Insert\
11---
11
II Description: . . . II This method is a wrapper to hide the system spec1f1c code to insert
II an item into the list box.
II
11 Parameters:
II szText
II
II

iHow

11 Returns:

- Pointer to text string to insert
- System specific parameter to indicate how the

item will be inserted

11 void
II
void C LISTBOX::Insert(char *szText, int iHow)
{

SendMsg(LM_INSERTITEM, MPFROMSHORT(iHow), MPFROMP(szText));

List items can be removed from a list dynamically. C_LISTBOX provides a
Delete() method to accomplish this. The Delete() method must be supplied with an
item number to remove, which in 0512 is a number between zero (for the first
item) and the total number of items in the list.

11--------
11 Delete\
11---
11
11 Description: II This method is a wrapper to hide the system specific code to delete
II an item from the list box.
II
11 Parameters: II iltem - Item to remove from the list (0-n)
II
11 Returns:
II void
II
void C_LISTBOX::Delete(int iitem)
{

SendMsg(LM_DELETEITEM, MPFROMSHORT(iitem), 0);

All items can be removed from the list box control by calling the DeleteAll()
method. Like most other methods in C_LISTBOX, this is a simple code wrapper
used to hide the specifics of 0512 from applications written using the PMCLASS
library.

PM CLASS LIBRARY I CHAPTER 6

11-----------
11 DeleteAll \
11---11
II Description:
II This method is a wrapper to hide the system specific code to delete II all items from the list box.
II
11 Parameters:
II none
II
11 Returns:
11 void
II
void C_LISTBOX::DeleteAll(void)
{

SendMsg(LM_DELETEALL, 0, 0);

Although the user can select items in a list box manually, there may be times
when you wish to force the selection of an item or items. For example, once a list
has been populated you will probably want to select the first item so the user has
a starting point.

C_LISTBOX provides a Select() method; this accepts an item number to
select or deselect and a TRUE or FALSE state for the selection. Items are numbered
zero through "n" in 05/2.

11--------
11 Select \
11---
11
11 Description:
II This method is a wrapper to hide the system specific code to select II an item from the list box.
II
I I Parameters:
11 iltem
II bBoolean
II
11 Returns:
II void
II

- Item to select from the list (0-n)
- TRUE to select, FALSE to deselect

void C LISTBOX::Select(int iltem, BOOL bBoolean) { -
SendMsg(LM_SELECTITEM, MPFROMSHORT(iltem), MPFROMSHORT(bBoolean));

}

LIST Box CLASS 161

162

The currently selected item(s) in the list box can be determined using the
Selection() method. This routine accepts an item number representing the starting
item for the search. For list boxes where multiple selections are permitted, the
iFrom parameter will be set to the current list item each time a selection is found.

11-----------
11 Selection \
11---
11
11 Description:
II This method is a wrapper to hide the system specific code to query
II the current list selection.
II
11 Parameters:
II iFrom - Item number to start searching from (O-n)
II
II Returns:
II int - Item number select. <O = no selection
II
int C_LISTBOX::Selection(int iFrom)
{

return (int)SendMsg(LM_QUERYSELECTION, MPFROMSHORT(iFrom), 0);

To determine the number of items in a list box, C_LISTBOX implements an
ItemCount() method. It returns an integer value indicating how many items are
currently in the list box.

11-----------
11 ItemCount \
11---
11
11 Description:
II This method is a wrapper to hide the system specific code to query
II the number of items in the list box.
II
11 Parameters:
II none
II
11 Returns:
II int - Number of items in the list box.
II
int C_LISTBOX::ItemCount(void)
{

return (int)SendMsg(LM_QUERYITEMCOUNT, 0, 0);

PM Ct.Ass LIBRARY I CHAPTER 6

To return the text string for a given item in the list box, use the ItemText()
method. This accepts an item number whose text will be returned and a pointer to
an output buffer area and its size. After the call to this method, the text from the
list will be written to the output buffer.

11----------
11 ItemText \
11---
11
II Description:
II This method is a wrapper to hide the system specific code to query
II the text string for a specified item.
II
11 Parameters:
11 i Item
II
II
II

szString
iBufferSize

11 Returns:
II void
II

- Item to query from the list (0-n)
- Pointer to buffer where text will be written
- Size of the output buffer in bytes.

void C_LISTBOX::ItemText(int iitem, char *szString, int iBufferSize)
{

SendMsg(LM_QUERYITEMTEXT, MPFROM2SHORT(iitem, iBufferSize),
MPFROMP(szString));

Status Line Class

In many applications there may be a requirement to display information for the
user without actually creating a dialog box and interrupting the user's activities.
PMCLASS toolbars, for example, can implement fly-over help text to inform the
user of the exact purpose of each button. The user has no desire to be interrupted
with a dialog box for this, and he or she would become really annoyed if you wrote
an application that did. Hints, however, are often welcome; to accomplish this you
can create a C_STATUS instance.

The C_STATUS window object is actually very simple, containing only a
constructor and a single method to set the status line text; there are no attributes at
all. The C_STATUS is shown in the following object diagram:

Figure 8·9 C_STATUS class

STATUS LINE Ct.Ass

C_STATUS

C_STATUS()
void Text()

163

164

The header file for C_STATUS is shown in Listing 6-8:

class C STATUS public C_WINDOW_CHILD
{

public:
_Export C_STATUS(C_WINDOW *pxcParentObj);
void _Export Text(char *szFormat, ...);

};

#define D ID STATUS 110

Listing 6·8 STATUS.HPP - Class definition for C_STATUS

The constructor creates the instance of a basic single line text editor win
dow. The edit line is marked as read-only so the user cannot modify it, and it is for
matted to look like a status line. The colors are set to a gray background with black
text, the same color scheme used for buttons in Presentation Manager.

11-------------
11 Constructor\
11---
11
II Description:
II This constructor creates an instance of the C STATUS class. It sets
II the initial font and color for the window and-configures the test
II limit at 256 characters.
II
I I Parameters:
II pxcParentObj - Pointer to owner object window
II
C STATUS::C STATUS(C WINDOW *pxcParentObj) : C_WINDOW_CHILD(pxcParentObj, 0)
{- - -

II Create the status window
ClassName(WC_ENTRYFIELD);
Create(D_ID_STATUS, WS_VISIBLEIES_READONLY, 1111

, 0, 20, 90, 30);

II Limit the line to 265 characters
PostMsg(EM_SETTEXTLIMIT, MPFROMSHORT(256), 0);

II Set the default font and colors for the status line
SetFont("10.Helv");
SetBackgroundColor(204, 204, 204);
SetForegroundColor(0, 0, 0);

PM CLASS LIBRARY I CHAPTER 6

The Text() method in C_STATUS accepts a "printf" -style string and param
eter list. The variable argument code in Text() formats an output string and writes
it to the status line window.

11------
11 Text \
11---
11 II Description:
II This method accepts a variable argument printf-style string and after
II formatting, it will display the string within the status line window.

II
11 Parameters:
II szFormat - Pointer to printf-style string

II
11 Returns:
11 void
II
void C_STATUS::Text(char *szFormat, ...)
{

char szStri ng [1024];
va list xtArgs;

II Format the text
va start(xtArgs, szFormat);
vsprintf(szString, szFormat, xtArgs);
va_end(xtArgs);

II Set the text in the status window
SetText(szString);

My goal was to keep the C_STATUS object very simple; however, there are
a number of possible enhancements that could be implemented in the C_STATUS
class. A chiseled border could be added around the perimeter of the status win
dow. Study the WM_PAINT handler in C_TOOLBAR to get some hints on how to
accomplish this. Also, users may want to have larger or smaller text appear in the
status line. You could add code to determine the current font and dynamically size
the status line accordingly.

STATUS LINE CLASS 165

166

Menu Class

Almost every application window will offer the user some form of action menu;
Presentation Manager provides a full suite of operations to manipulate the ~enu
and its operations. For example, under program control, a menu can have options
added or removed, depending on the current operating mode of the program. An
existing menu option can also be modified, which is useful for operations that tog
gle each time they are selected.

PMCLASS implements a C_MENU class having a limited set of menu oper
ations. I added support for only those features I required; you may find that you
need to add methods to support other functions. For instance, the C_MENU class
has no provision for adding bitmaps to menus, which may be important in some
situations. The goal for C_MENU, as well as the whole PMCLASS library, was to
write a set of classes as small as possible, so I avoided adding code for which I had
no immediate need. The C_MENU class is illustrated in Figure 6-10.

C_MENU

C_MENU()

void Enableltem()

void Disableltem()

void SetltemText()

void GetltemText()

Figure 6·10 C_MENU class

The header file for C_MENU is shown in Listing 6-9:

class C MENU
{

public C_WINDOW_CHILD

public:
_Export C MENU(C WINDOW *pxcParentObj);
void _Export Enableitem(int iIDitem);
void Export Disableltem(int iIDitem);
void _Export SetitemText(int iIDitem, char *szText);
void _Export GetitemText(int iIDitem, char *szText, int iSize);

};

Listing 6·9 MENU.HPP- Class definition for C_MENU

C_MENU implements a single constructor. Unlike other control window
classes in this chapter, you cannot create a menu dynamically, or load one from a
dialog. This class assumes that the menu already exists as part of a window, so
there is no need to provide constructors to support these capabilities. You could
add this capability, since it is supported by 05/2; I saw no immediate need, so I
omitted it.

PM CLASS LIBRARY I CHAPTER 6

The C_MENU constructor associates the current menu for the owner win
dow with its instance. It acquires the menu handle using the Win Window
FromID() API function, referencing the FID _MENU identifier defined by
Presentation Manager. It then invokes the C_ WINDOW::Create() method to link
the parent window and the menu.

11-------------
11 Constructor\
11--
11
II Description:
II This constructor retrieves a window handle for the owner window's menu.
II
11 Parameters:
II pxcParentObj - Pointer to owner of the menu.
II
C_MENU::C_MENU(C_WINDOW *pxcParentObj) : C_WINDOW_CHILD(pxcParentObj, 0)
{

HWND hWnd;

II This window is of the menu class
ClassName(WC_MENU);

II The window was created by the parent window, so all we need to
II do is find out where it is
hWnd = WinWindowFromID(ParentObject()->ParentWindow(), FID_MENU);
C_WINDOW::Create(ParentObject()->ParentWindow(), hWnd);

Every option in an action menu should be specified by a unique identifier;
every action performed for a menu option must reference this identifier.

The first method implemented in C_MENU is Enableltem(). This method
wraps a call to the WinEnableMenultem() API function, which isolates this operating
system specific call from the application. Enableltem() accepts a menu option
identifier and enables that option.

11------------
11 Enableltem \
11---
11
II Description:
II This method enables the menu item with the specified identifier.
II
11 Parameters:
II iIDitem - ID of the menu item to enable
II
11 Returns:

MENU CLASS 167

168

II void
II
void C_MENU::Enableitem(int iIDitem)
{

II Call the API to enable the menu item
WinEnableMenuitem(Window(), iIDitem, TRUE);

The complementary member function to Enableltem() is Disa~leltem9.
This method accepts an identifier and disables the associated menu option. This
has the effect of graying the option out and preventing the user from selecting it.

11-------------
11 Disableltem \
11---
11
II Description:
II This method disables the menu item with the specified identifier.
II
I I Parameters:
II iIDitem - ID of the menu item to disable
II
11 Returns:
II void
II
void C MENU::Disableitem(int iIDitem)
{

II Call the API to disable the menu item
WinEnableMenuitem(Window(), iIDitem, FALSE);

The text for any menu item can be modified easily. C_MENU provides a
SetltemText() method to permit this capability. SetltemText() accepts an identifier
and a pointer to a string and changes the text for the specified menu option.

11-------------
11 SetitemText \
11---
11
II Description:
II This method changes the menu item text for the specified menu identifier.
II
I I Parameters:
II iIDitem - ID of the menu item to set
11 szText - Pointer to new menu item text
II
11 Returns:
II void

PM CLASS LIBRARY I CHAPTER 6

II
void C_MENU::SetitemText(int iIDitem, char *szText)
{

II Call the API to set the menu item text
WinSetMenuitemText(Window(), iIDitem, szText);

There may be occasions when the text associated with a menu option needs
to be retrieved. The GetltemText() method will return the current text for the
option with the specified identifier.

11-------------
11 GetitemText \
11---
11
II Description:
II This method retrieves the menu item text for the specified menu identifier.
II
I I Parameters:
11 i ID Item
II
II
II

szText
iSize

II Returns:
II void
II

- ID of the menu item to get
- Pointer to menu item text
- Size of the szText output buffer

void C_MENU::GetitemText(int iIDitem, char *szText. int iSize)
{

II Call the API to query the menu item text
SendMsg(MM_QUERYITEMTEXT, MPFROM2SHORT(iIDitem, iSize), szText);

Slider Class

IBM CUA'91 specifies a new control window called a slider. A slider is an adjust
able analog control consisting of a horizontal or vertical slide-type mechanism that
can optionally contain scale text and point indicators. Sliders are also useful for
creating "percent complete" indicators, which is how I normally use this control.

PMCLASS implements only a limited set of features for the slider control;
however, like all classes in this book, you are free to (and likely will want to)
expand the capabilities of the code to suit your own requirements. The current
code has no capability to display increment "ticks" or scale text; however, it can
display the slider itself and set its value and scale size. Adding the missing fea
tures should be as simple as adding a new method or two.

SUDER CLASS 169

170

The C_SLIDER from the PMCLASS library is quite simple, consisting of
only three methods and a single attribute. It is illustrated in Figure 6-11.

C_SLIDER

SLDCDATA slData C_SLIDER()

void Scale()

void Value()

Figure 6·11 C_SLIDER class

The header file for C_SLIDER is shown in Listing 6-10:

class C_SLIDER : public C_WINDOW_CHILD
{

};

private:
SLDCDATA

public:
Export

_Export
void _Export
void _Export

slData; II Slider data area

C SLIDER(C WINDOW *pxcParentObj, int iID, int iMode,
- - int iincrements, int iScale);

C SLIDER(C DIALOG *pxcParentObj, int iID);
Scale(int iincrements, int iSpacing);
Value(int iValue);

Listing 6·10 SLIDER.HPP - Class definition for C_SLIDER

C_SLIDER implements two constructors. The first of these is used to create
a slider at run time as a child of a specified parent/ owner window. Like other con
trol class windows, the constructor also requires a window identifier used when
monitoring events sent to the owner of the slider window.

The final parameter sent to this constructor is the mode. The mode value
consists of various OS/2 specific slider configuration parameters, as shown in the
following table:

SLS_ VERTICAL

SLS_HORIZONTAL

SLS_CENTER

SLS_BOTTOM

Specifies that the slider has a vertical
orientation

Specifies that the slider has a horizontal
orientation

The slider is centered within its window

The slider is positioned at the bottom of its
window rectangle

PM CLASS LIBRARY I CHAPTER 6

SLS_TOP

SLS_HOMELEFT

SLS_HOMERIGHT

SLS_HOMETOP

SLS_HOMEBOTTOM

SLS_BUTTONSLEFT

SLS_BUTTONSRIGHT

SLS_BUTTONSTOP

The slider is positioned at the top of its
window rectangle

For horizontal sliders, the home position
is at the left

For horizontal sliders, the home position
is at the right

For vertical sliders, the home position is
at the top

For vertical sliders, the home position is
at the bottom

For horizontal sliders, the value adjusting
buttons are at the left

For horizontal sliders, the value adjusting
buttons are at the right

For vertical sliders, the value adjusting
buttons are at the top

SLS_BUTTONSBOTTOM For vertical sliders, the value adjusting
buttons are at the bottom

SLS_READONLY The slider is not changeable by the user

SLS_SNAPTOINCREMENT The slider arm value moves only between
exact increment values

SLS_RIBBONSTRIP As the slider arm moves, the slider is filled
from the home position to the current value

This table represents only a quick overview of the styles acceptable to the
control. For more details on the control styles valid for a slider control, refer to Pre
sentation Manager on-line documentation.

The final parameters to the constructor are the increment and scale. These
values are used by the Scale() method, which is called by the constructor code and
will be discussed later in this section. Refer to the C_SLIDER::Scale() method for
more details.

11-------------
11 Constructor\

11--11
II Description:
II This constructor creates a slider control which has a C_WINDOW parent.
II
11 Parameters:
II pxcParentObj
11 ; ID

SUDER CLASS

Pointer to owner of the slider.
- Window ID for the slider

171

172

II iMode - Any additional OSl2 specific scale modifiers
II iincrements - The number of increments on the slider
II iSpacing - The spacing between increments

~ISLIDER::C_SLIDER(C_WINDOW *pxcParentObj, int iID, int iMode, .
- int iincrements, int iScale) : C_WINDOW_CHILD(pxcParentObJ, 0)

HWNDhWnd;

II Set some default scale increments
Scale(iincrements, iScale);

ClassName(WC SLIDER);
hWnd = WinCreateWindow(ParentObject()->Window(), WC_SLIDER, NULL,

SLS PRIMARYSCALEl I WS VISIBLE I iMode,
0,0:22,16, ParentObject()->Window(), HWND_TOP, iID, &slData, 0);

II Tell the main Window interface about the window
c WINDOW::Create(ParentObject()->Window(), hWnd);

The second constructor is used to interface to slider controls that _reside
within dialog resources. There is no need to specify a mo~e parameter for this_ con
structor, since the slider characterization is performed within the resource editor.

11-------------
11 Constructor\
11---
11
II Description:
II This constructor connects to a slider control which originates
II inside a dialog resource.
II
11 Parameters:
II pxcParentObj - Pointer to dialog ow~er of the slider
II iID - Window ID for the slider

~ISLIDER::C SLIDER(C DIALOG *pxcParentObj, int iID)
- - - : C_WINDOW_CHILD((C_WINDOW *)pxcParentObj, 0)

{
ClassName(WC_SLIDER);

II The window was created by the dialog system, so all we need to
II do is call our parent Create()
c WINDOW::Create(ParentObject()->Window(),
- WinWindowFromID(ParentObject()->Window(), iID));

PM CLASS LIBRARY I CHAPTER 6

C_SLIDER provides the Scale() function to set the number of increments
within the slider as well as the pixel spacing between slider increments. If the spac
ing value is set to zero, then PM spaces the increments automatically.

Scale() must be called before the window is created. For this reason it is
called in the constructor.

11-------
11 Scale \
11---11
II Description:
II This method defines the number of increments and the spacing of
II the slider scale.
II
11 Parameters:
II ilncrements - The number of increments on the slider
II iSpacing - The spacing between increments
II
II Returns:
II void
II
void C_SLIDER::Scale(int ilncrements, int iSpacing)
{

slData.cbSize = sizeof(SLDCDATA);
slData.usScalellncrements = iincrements;
slData.usScalelSpacing = iSpacing;

To set the value of the slider, C_SLIDER provides a Value() function that
accepts an integer representing the new slider value. The value must be within the
range of the slider--C_SLIDER performs no range checking on the value supplied.

11-------
11 Value \
11---11
II Description:
II This method sets the value contained in the slider to that specified.
II The iValue parameter should be less than the number of increments
II on the slider.
II
11 Parameters:
II iValue - New value for the slider position
II
11 Returns:
II void
II

SLIDER CLASS 173

174

void C_SLIDER::Value(int iValue)
{

WinSendMsg(Window(). SLM SETSLIDERINFO, MPFROM2SHDRT(
SMA_SLIDERARMPOSITION, SMA INCREMENTVALUE),

- MPFRDMSHORT ((SHORT) i Value)) ;

Of all the classes in this book, this one offers the most potential for expan
sion. Many of the capabilities of the native PM slider control are untapped, and if
you use sliders at all, you will want to make some alterations.

Toolbar Button Class
We need not delve too deeply into the code dealing with toolbar buttons since this code is mostly internal to PMCLASS. However, there may be occasions when you want to create a button with a graphic, rather than the ordinary text button sup
plied by Presentation Manager, so I will present the code and describe how
PMCLASS's buttons function at a high level.

All toolbar buttons that you will notice in the applications in Part III are
actually instances of the C_BUTTON_TBAR class in the PMCLASS library. C_BUTTON_TBAR offers the ability to create buttons with graphical faces rather
than ordinary text, and also features the capability of presenting different graphics
in each of the three possible button states (Up, Down, and Disabled).

To simplify creation of button graphics, the C_BUTTON_TBAR class uses
graphics in PM ICON or POINTER format and that can be constructed using OS/2's ICONEDIT program. The icons are stored in the resource file associated with an application and are linked into the executable program when it is built.

The C_BUTTON_TBAR class can be shown as follows:

C_BUTTON_TBAR

int iID; C_BUTION_TBARO
int iX; void Initialize()

int iY; void* MsgMouseMove()

int iState; void* MsgPaint()

int ildUp; void* MsgButtonlDown()
int ildDn; void* MsgButtonl Up()
int ildDisable; void State()
char *szButtonText; void Toggle()

int State()

int ID()
char* Text()

int XO

PM CLASS LIBRARY I CHAPTER 6

C_BU'ITON TBAR (Continued)

int Y()
int Up()
int Down()
int Disable()

Figure 6·12 C_BUTION_TBAR class

. C_BUTTON_TBAR is a window object like any other in PMCLASS A such, it must process certain window messages, and so must provide a mes~ag:
table to reference methods within the class and equate them with th · needs to process. e messages it

DECLARE_MSG_TABLE(xtButtonMsg)
DECLARE MSG(WM MOUSEMOVE
DECLARE-MSG(WM-PAINT '

C_BUTTON_TBAR::MsgMouseMove)
C_BUTTON_TBAR::MsgPaint)
C_BUTTON_TBAR::MsgButtonlDown)
C_BUTTON_TBAR::MsgButtonlUp)

DECLARE-MSG(WM-BUTTONlDOWN
DECLARE-MSG(WM-BUTTONlUP •

END_MSG_TABLE - •

The header file for C_BUTTON_TBAR is shown in Listing 6-11:

class C BUTTON TBAR public C_WINDOW_CHILD { - -
private:

int
int
int
int

int
int
int
char

public:
_Export
_Export

void

void *
void *
void *
void *

iID;
iX;
iY;
iState;

ildUp;
ildDn;
ildDisable;
*szButtonText;

C_BUTTON_TBAR(void);
C_BUTTON_TBAR(C_WINDOW *pxcParentObj);

_Export

_Export
_Export
_Export
_Export

Initialize(int iButtonID, int iXPos int iYPos
int iUp, int iDn, int iDis. char,*szText);

0

MsgMouseMove(void *mpl, void *mp2);
MsgPaint(void *mpl, void *mp2);
MsgButtonlDown(void *mpl, void *mp2);
MsgButtonlUp(void *mpl. void *mp2);

TOOLBAR BUITON CLASS 175

176

void
void

_Export
_Export

State(int iNewState);
Toggle(void);

#ifdef BORLANDC_
int
int
char *
int
int
int
int
int

_Export
_Export
_Export
_Export
_Export
_Export
_Export
_Export

State(void) { return iState; };
ID(void) { return iID; };
Text(void) { return szButtonText; };
X(void) { return iX; };
Y(void) { return iY; } ;
Up(void) { return ildUp; };
Down(void) { return ildDn; };
Disable(void) { return ildDisable; };

#else

#end if
};

int
int
char *
int
int
int
int
int

State(void) { return iState; };
ID(void) { return iID; };
Text(void) { return szButtonText; };
X(void) { return iX; } ;
Y(void) { return iY; } ;
Up(void) { return ildUp; };
Down(void) { return ildDn; };
Disable(void) { return ildDisable; };

11-----------------
11 Button messages \
11---
#define BM_CREATE PM_USER
#define BM BUTTON PM USER+l
#define BM-TEXT PM USER+2
#define BM=BUTTON1DOWNPM_USER+3

11---------------
11 Button states \
11---
#define D_BUTTON_UPl
#define D_BUTTON_DN2
#define D_BUTTON_DIS-1

Listing 6·11 BUTION.HPP- Class definition for C_BUTION_TBAR

c BUTTON TBAR offers two constructors. The first is the basic void con
structor that simply-presents the message table to the C-:-WINDOW-:-CH11:D parent
class. The second constructor additionally associates this button ob1ect with a spe-
cific parent or owner object.

PM CLASS LIBRARY I CHAPTER 6

11-------------
11 Constructor\
11---11
II Description:
II This constructor creates an instance of the C BUTTON TBAR class. II - -
11 Parameters:
II none
II
C_BUTTON_TBAR::C_BUTTON_TBAR(void) C_WINDOW_CHILD(xtButtonMsg)
{
}

11-------------
11 Constructor \
11---
11
II Description:
II This constructor creates an instance of the C BUTTON TBAR class. v - -
11 Parameters:
II pxcParentObj - Pointer to owner object
II
C_BUTTON_TBAR::C_BUTTON_TBAR(C_WINDOW *pxcParentObj)

: C_WINDOW_CHILD(pxcParentObj, xtButtonMsg)

The initialize method sets up the default characteristics for the button. All
buttons possess an X,Y location relative to their parent, as well as a button ID. The
iUp, iDn and iDis parameter should contain the resource identifiers of the icons
used to paint the button in the up, down, and disabled states, respectively. If the
button does not feature one of these states, the disable state for example, the
resource ID can be set to a value of zero.

The final parameter for a button is the fly-over text. This text is sent to the
button owner window as part of a BM_TEXT message that tells the owner what
help text it should display in its status line. This text is completely optional; the
parameter may be supplied as NULL if necessary.

11--------------
11 Initialize() \
11---11
II Description:
II This method sets up the initial default values for the button instance.
II Then it registers and creates a window for the button object, setting
II its initial state to the UP position.

TOOLBAR BUTTON CLASS 177

178

II
11 Parameters:
II iButtonlD
II
II
II
II
II
II

i XPos, i YPos
iUp
iDn
iDis
szText

II Returns:
II void
II

- Button ID for the button
- The initial X,Y position relative to the owner
- Resource ID of the Up position ICON
- Resource ID of the Down position ICON
- Resource ID of the Disable position ICON
- Pointer to the fly over help text string

void C BUTTON TBAR::lnitialize(int iButtonlD,
- int iXPos, int iYPos, int iUp, int iDn, int iDis, char *szText)

II Save the important things
ilD = iButtonlD;
iX = iXPos;
iY = iYPos;
ildUp = iUp;
ildDn = iDn;
ildDisable = iDis;
iState = D_BUTTON_UP;
szButtonText = NULL;
if(strlen(szText))

szButtonText = szText;

II Make sure the toolbar class has been registered
Register("TBarButton") ;

Create(i!D, WS_ VISIBLE, "TBarButton", i X, i Y, 32, 32) ;

II Set the initial button state
State(D_BUTTON_UP);

The MsgMouseMove() method is called whenever the mo~se pointer is
moved over the button. Its only function is to inform the owner wmdow of fly-
over help text if it exists.

11--------------
11 MsgMouseMove \
11---
11 Event: WM MOUSEMOVE
II Cause: Issued by the OS if the mouse is moved over the button
II Description:This method gets called when the user moves the mouse over
II the button region. This forces the fly-over text to be set
II for the button by issuing a BM_TEXT message to the owner.

PM CLASS LIBRARY I CHAPTER 6

void *C_BUTTON_TBAR::MsgMouseMove(void *mpl, void *mp2)
{

if(strlen(Text()) > 2)
{

II If the mouse is moving over the button, tell the parent to
II display this buttons helper text in the status window
ParentObject()->SendMsg(BM_TEXT, (void *)ID(), (void *)Text());

return FALSE;

The MsgPaint() method controls the visual aspects of the button object. This
method is invoked whenever the button needs to process the WM_PAINT mes
sage. When this occurs, the code determines which state the button is in and loads
the correct icon from the resource pool of the EXE.

11----------
11 MsgPaint \
11---11 Event: WM PAINT
II Cause: Issued by the OS when the button needs to be redrawn
II Description:This method gets called when the button needs to be redrawn
I I for any reason.
void *C_BUTTON_TBAR::MsgPaint(void *mpl, void *mp2)
{

HPS
RECTL
HPOINTER

hps;
re;
hPointer;

hps = WinBeginPaint(Window(), OL, &re);

II Draw the correct button face
switch(State())
{

case D BUTTON UP: - -
hPointer = WinLoadPointer(HWND_DESKTOP, 0, Up());
break;

case D_BUTTON_DN:
hPointer = WinloadPointer(HWND DESKTOP, 0, Down());
break; -

default:
hPointer = WinloadPointer(HWND_DESKTOP, 0, Disable());
break;

WinDrawPointer(hps, 0, 0, hPointer, DP_NORMAL);
WinDestroyPointer(hPointer);

TOOLBAR BUTTON CLASS 179

180

WinEndPaint(hps);

return FALSE;

The MsgButtonlDown() and MsgButtonlUp() methods.are c.ontro~~d by
the user operation of the left mouse button while the mouse pomter is pos1ti~n~d
over the button. These methods simply notify the button owner that some acti~1ty
has occurred. The button will be forced to repaint in the new state to provide
visual feedback to the user.

11------------------
11 MsgBMButtonlDown \ -------------11--II Event: WM BUTTONlDOWN II cause: Issued by the OS when user presses the first mouse button II Description:This method gets called when the user presses mouse button 1 II while over button. It toggles the state of the button and
II sends a BM_BUTTONlDOWN message to t~e ~wner.
void *C_BUTTON_TBAR::MsgButtonlDown(void *mpl, void mp2)
{

II Set the correct state for the button
if(State() == D_BUTTON_UP && strlen(Text()) > 2)
{

Toggle();

ParentObject()->PostMsg(BM_BUTTONlDOWN, 0, 0);

return FALSE;

11----------------
11 MsgBMButtonlUp \
11---11 Event: WM BUTTONlDOWN . II cause: Issued by the OS when user presses the first mouse button II oescription:This method gets called when the user presses mouse button 1 II while over button. It toggles the state of the button and
II sends a BM_BUTTONlDOWN message to the owner.
void *C_BUTTON_TBAR::MsgButtonlUp(void *mpl, void *mp2)
{

if(State() == D_BUTTON_DN && strlen(Text()) > 2)
{

Toggle();

II Tell the parent that this button has changed states

PM CLASS LIBRARY I CHAPTER 6

ParentObject()->PostMsg(BM_BUTTON, (void *}ID(),O);

II Force the button to be repainted
MsgPaint(0, 0);

return FALSE;

The final two methods in the C_BUTI'ON_TBAR class are essentially state
controllers. The State() method can be used to set the state of a button to a prede
termined position. Valid values passed to State() are D_BUTI'ON_UP,
D_BUTI'ON_DN, or D_BUTI'ON_DIS.

11-------
11 State\
11---11 Description:
II This method sets the state of the button to one of D_BUTTON_UP, II D_BUTTON_DN, or D_BUTTON_DIS.
II
11 Parameters:
II iNewState - The new state of the button
II
II Returns:
II none
II
void C_BUTTON_TBAR::State(int iNewState)
{

II Change the state and force a redraw
iState = iNewState;
Invalidate();

The Toggle() method is similar, except that state is simply toggled between
the unpressed position and the depressed position. These methods permit much
more flexibility to the C_BUTI'ON_TBAR object than one can achieve with the
standard PM button control. With C_BUTTON_ TBAR, you can create buttons
capable of being "latched" in a given position, something that is more difficult
with stock PM buttons.

Toggling is useful for creating buttons to control modes of operation. If you
have seen the FI'P client in the NeoLogic Network Suite, then I will point out that
this application uses the Toggle() method to switch between ASCII and binary file
transfer modes. The icon graphic for each of the states is such that the user can
scan the toolbar to determine exactly which mode is currently set.

TOOLBAR BUTTON CLASS 181

182

11--------
11 Toggle\ ---------------------------11--
II Descriptiont:h d toggles the state of the button from up to down or II This me o
II vice versa.
II
I I Parameters:
II
II

none

11 Returns:
II none

~~id C_BUTTON_TBAR::Toggle(void)
{

II If the button is up
if(State() == D_BUTTON_UP)
{

II Set the button in the down position
State(D_BUTTON_DN);

else
{

II Otherwise, if the button is down
if(State() == D_BUTTON_DN)
{

II Set the button in the up position
State(D_BUTTON_UP);

ould have been simplified greatly using the "?:" conditional oper-
Toggle() c hi uld ome at the expense of more convoluted code. ator in C/C++; however, t s wo c

For example:

void C_BUTTON_TBAR::Toggle(void)
{

II Toggle the state of the button
State(State() == D_BUTTON_UP ? D_BUTTON_UP : D_BUTTON_UP);

h . of this single line of code is not nearly as clear.
As you can see, t e mearung . . d' IBM's will reduce the

Realize that a good optimizing compile~ like Borlan s or . "t would be a wise
Toggle() code to this equivalent abbreviated ~orm anywa~, .1
move to leave the code in its current form for simple readability.

PM CLASS LIBRARY I CHAPTER 6

Toolbar Class

One of the simplest ways to improve the appearance and usability of an applica
tion is to implement a toolbar, a popular feature so simple to implement that one
wonders why so many programs still do not offer them. A toolbar is nothing but a
simple window that contains or "owns" a set of buttons. The buttons can provide
feedback to the toolbar control, which in turn can relay this information to its
owner, usually the client window of an application frame window.

PMCLASS implements a rudimentary toolbar system in the C_TOOLBAR
class. Although this class is marked by simplicity, it is surprisingly capable, and
with a little experience, you should be dropping toolbars into every application
you create. The C_TOOLBAR class is typically used as an abstract class from
which specific toolbars are derived. The child class code, however, usually consists
only of a set of tables to define the buttons to be inserted into the toolbar and to cre
ate a reference between a button and a WM_COMMAND message that will be
sent to the owner window when a button is pressed. Very little real code is
required to create powerful and appealing toolbars.

The C_TOOLBAR class is illustrated as follows:

C_TOOLBAR

C_STATUS *pxcStatus C_TOOLBAR()
int ilD -C_TOOLBAR()
int iHeight void* MsgCreate()
C_BUTTON_TBAR Button[20] void* MsgBMButton()
int iButtonCount void* MsgBMText()
int iLastID void* MsgBMButtonlDown()
char szOldText[256] void* MsgMouseMove()
int iText void* MsgPaint()
int iMouseButton char* Old Text()

int ButtonCount()
int LastlD()
void LastID()
void Status()
void Control()
void Create Buttons()
void Button Toggle()
void ButtonState()
void ButtonEnable()
C_BUTTON_TBAR * Buttons()
C_STATUS* Status()
C_BUTTON_TBAR * ButtonData()

Figure 6·13 C_TOOLBAR class

TOOLBAR CLASS 183

184

C_TOOLBAR is really just a special control window; as such, PMCLASS

implements a message table for it in order to intercept some key window mes

sages. Most of the messages concerning the toolbar code originate in the graphical

button windows owned by the toolbar.

DECLARE MSG TABLE(xtToolBarMsg)
DECLARE MSG(PM CREATE,
DECLARE=MSG(BM=BUTTON,
DECLARE_MSG(BM_TEXT,
DECLARE_MSG(BM_BUTTONlDOWN,
DECLARE MSG(WM MOUSEMOVE,
DECLARE=MSG(WM=PAINT,

END_MSG_TABLE

C_TOOLBAR::MsgCreate)
C TOOLBAR::MsgBMButton)
C-TOOLBAR::MsgBMText)
C-TOOLBAR::MsgBMButtonlDown)
C-TOOLBAR::MsgMouseMove)
C=TOOLBAR::MsgPaint)

The header file for C_TOOLBAR is shown in Listing 6-12:

11--------------------------
11 Toolbar macro definition \

11---
typedef struct
{

int
int
int
int

iID;
ildUp;
ildDown;
ildDisable;

char *szText;
int iX;
int iY;

T_BUTTON_TABLE;

#define DECLARE BUTTON TABLE(button table)\
T_BUTTON_TABLE - button_table[] =\
{\

#define END_BUTTON_TABLE\
{ 0, 0, 0, 0, 0, 0, 0 }\

};\

#define DECLARE BUTTON(ilD, ildUp, ildDown, ildDisable, szText, iX, iY)\
{ (iID), (ildUp), (ildDown). (ildDisable), (szText), (iX), (iY) },

typedef struct
{

int iButtonld;
int iCollmandld;

T_BUTTON_CMD_TABLE;

#define DECLARE_BUTTON_CMD_TABLE(button_cmd_table)\

PM CLASS LIBRARY I CHAPTER 6

T BUTTON CMD TABLE
{\ - - button_cmd_table[J =\

#define END BUTTON CMD TABLE\
{ 0, 0 }\ - - -

};\

#define DECLARE_BUTTON_CMD(iButtonld, iC0111Tiandld)\
{ (iButtonld), (iCommandld) },

#define D_MAX_BUTTON 15 II Max number of buttons on any toolbar

11----------------------------
11 C_TOOLBAR class definition \

11---
class C_TOOLBAR public C WINDOW CHILD
{ - -

private:
C_STATUS ~pxcStatus; II Optional status bar for text display
int 1ID; II Window ID of Toolbar
int iHeight; II Height of the toolbar in pixels
C_BUTTON_T~AR xcButton[D_MAX_BUTTON]; II toolbar button array
int 1ButtonCount; II Number of buttons on toolbar
int iLastID; II Last button that displayed help text
char szOldText[256];

public:
int
int

iText;
iMouseButton;

_Export C_TOOLBAR(C_WINDOW *pxcParentObj, int iTBarld,

_Export

void *
void *
void *
void *
void *
void *

#ifdef ~BORLANDC

-C_TOOLBAR(void);
int iTBarHeight);

_Export
_Export
_Export
_Export
_Export
_Export

MsgCreate(void *mpl, void *mp2);
MsgBMButton(void *mpl, void *mp2);
MsgBMText(void *mpl, void *mp2);
MsgBMButtonlDown(void *mpl,void *mp2);
MsgMouseMove(void *mpl, void *mp2);
MsgPaint(void *mpl, void *mp2);

char* _Export OldText(void) { return szOldText· }·
~-BUTTON_TBAR *_Export Buttons(void) { return xcButton; J; '
int _Export ButtonCount(void) { return iButtonCount; };
int _Export LastID(void) { return iLastID; };
void _Export LastID(int iValue) { iLastID = iValue; };
C_STATUS * _Export Status(void) { return pxcStatus; };

TOOLBAR CLASS 185

186

#else

#endif

};

char *
C_BUTTON_TBAR *
int

OldText(void) { return szOldText; };

int

Buttons(void) { return xcButton; };
ButtonCount(void) { return iButtonCount; };
LastID(void) { return ilastID; };
LastID(int iValue) { ilastID = iValue; };
Status(void) { return pxcStatus; };

void
C STATUS *

void
void

_Export
_Export

void _Export

C_BUTTON_TBAR * _Export
void _Export
void _Export
void _Export

Status(C_STATUS *pxcStatusWindow);
Control(ULONG mpl,

T_BUTTON_CMD_TABLE *xtlookup);

CreateButtons(
T BUTTON TABLE *pxtButtonTable);

ButtonData (int-);
ButtonToggle(int);
ButtonState(int iButtonld, int iState);
ButtonEnable(int iButtonld, int iValue);

Listing 6·12 TBAR.HPP- Class definition for C_TOOLBAR

C_TOOLBAR implements a single constructor. Unlike most of the other
classes in the PMCLASS library, you cannot implement a toolbar in a dialog win
dow, so we have no need of a second dialog-based constructor. The constructor
method accepts a pointer to a parent window and an identifier like most other
class constructors; however, it also accepts a window height.

In the previous discussion of toolbar buttons we saw that the graphics for
these controls are derived from standard 32x32 pixel icons or pointers. The height
of the window therefore needs to be slightly larger, and is normally set at 40 pixels
in order to produce a toolbar that is one continuous line across _the owner windo_w.
The height can be changed if you decide you want a toolbar with smaller graphics
or more than one row of buttons.

11-------------
11 Constructor\
11---
11
II Description: II This constructor creates an instance of the C_TOOLBAR class. This
II class will typically be abstract so this constructor will generally
II not be called directly.
II
11 Parameters:
II pxcParentObj
11 iTBarlD

- Pointer to owner object window
- Resource ID of the toolbar window

PM CLASS LIBRARY I CHAPTER 6

II iTBarHeight - Height of the toolbar in pixels
II
C_TOOLBAR::C_TOOLBAR(C_WINDOW *pxcParentObj, int iTBarID,

: C_WINDOW_CHILD(pxcParentObj,

II Save the important things
pxcStatus = NULLHANDLE;
iHeight = iTBarHeight;
iButtonCount = O;
i Last ID = O;
i ID = iTBarID;

ParentObject(pxcParentObj);

II Make sure the toolbar class has been registered
Register("ToolBar");

Create(iTBarID, 0, "ToolBar", 0, 0, 0, iHeight);

int iTBarHeight)
xtToolBarMsg)

C_TOOLBAR implements a destructor as well. Its only purpose is to reset
the button count, which prevents the toolbar from sending messages to buttons
that no longer exist.

11------------
11 Destructor \
11---11 Description:
II This destructor resets the button count to zero.
II
11 Parameters:
11 none
II
C_TOOLBAR::-C_TOOLBAR(void)
{

II Reset the button count because all of them are now invalid
iButtonCount = O;

Since C_TOOLBAR is a window class, it processes some specific messages
from Presentation Manager. The first of these is the WM_CREATE message han
dled by the MsgCreate() method.

MsgCreate() sets the mouse pointer to a normal arrow. You normally would
no~ need this line, but I have implemented it in case you want to change the
pointer to something else. The remainder of the code in MsgCreate() is used to
reset the fly-over help text feature of the toolbar.

TOOLBAR CL.ASS 187

188

11-----------
11 MsgCreate \
11---
11 Event: PM_CREATE
11 Cause: Issued by OS when window is create~ II Description:This method gets called when the window is in1t1ally created.
II It initializes all the visual aspects of the class.
void *C_TOOLBAR::MsgCreate(void *mpl, void *mp2)
{

WinSetPointer(HWND DESKTOP,
WinQuerySysPointer(HWND_DESKTOP, SPTR_ARROW, FALSE));

LastID(O) ;
strcpy(OldText(), "");
iText = O;
iMouseButton = O;

return FALSE;

MsgBMButton() is invoked whenever the user presses a toolbar button. The
first message parameter, mpl, contains the window identifier of the button that
was pressed. The method records this button press and relays a ~-CONTROL
message to the toolbar owner window notifying it of the user action.

11-------------
11 MsgBMButton \
11---11 Event: BM_BUTTON
II Cause: Issued by a button when it is pressed by the user
II Description:This method gets called when the user presses a toolbar
II button. mpl holds the ID of button pressed.
void *C_TOOLBAR::MsgBMButton(void *mpl, void *mp2)
{

int iButtonID;

II Get the ID of the button that was pressed
iButtonID = (int)mpl;
iMouseButton = O;

II Send message to parent to say a button was pressed
ParentObject()->PostMsg(WM_CONTROL, MPFROM2SHORT(iID, iButtonID), 0);

return FALSE;

PM CLASS LIBRARY I CHAPTER 6

The MsgBMText() method is executed whenever the user moves the mouse
pointer over a button or moves it off a button. This causes the fly-over text in the
status line to change or be restored to the previous contents.

11-----------
11 MsgBMText \
11---11 Event: BM_TEXT
II Cause: Issued by a button when the fly-over text changes
II Description:This method gets called when the user moves the mouse
II over a toolbar button causing the fly-over text to change.
void *C_TOOLBAR::MsgBMText(void *mpl, void *mp2)
{

II Display the button help text in the status window if the
II button has changed
if(LastID() != (int)mpl)
{

if(!iText)
{

}

Status()->GetText(OldText(), 256);
iText = l;

LastID((int)mpl);
Status()->Text((char *)mp2);

return FALSE;

MsgBMButtonDown() is invoked when the user presses one of the buttons
on the toolbar. The method simply acknowledges that the event has occurred by
setting the iMouseButton attribute. When the MsgMouseMove() method deter
mines that the mouse has been moved off a button that is currently depressed, it
needs to restore the button to its normal state.

11------------------
11 MsgBMButtonlDown \
11---11 Event: BM BUTTONlDOWN
II Cause: Issued by a button when user presses a toolbar button
II Description:This method gets called when the user presses mouse button 1
II while over a toolbar button.
void *C_TOOLBAR::MsgBMButtonlDown(void *mpl, void *mp2)
{

iMouseButton = 1;
return FALSE;

TOOLBAR CLASS 189

190

The MsgMouseMove() method is called by Presentation Manager when the

mouse is moved in the toolbar window. If the mouse was moved off a toolbar but

ton, the code determines if the button was depressed at the time. If so, the button

is restored to its normally unpressed state. The status line text in existence before

the mouse was moved over the buttons is restored.

11--------------
11 MsgMouseMove \
11---
11 Event: WM_MOUSEMOVE
II Cause: Issued by the OS if the mouse is moved over the toolbar
II Description:This method gets called when the user moves the mouse over
II the toolbar window. This forces the fly-over text for the last

II button to be trashed, restoring to the status line what was
11 there previously.
void *C_TOOLBAR::MsgMouseMove(void *mpl, void *mp2)
{

WinSetPointer(HWND_DESKTOP,

if(LastlD())
{

WinQuerySysPointer(HWND_DESKTOP, SPTR_ARROW, FALSE));

II If the mouse button is depressed, make sure we toggle
II the state of the last button pressed
if(iMouseButton)
{

ButtonState(LastID(), D_BUTTON_UP);

iMouseButton = O;
Last ID(0) ;
Status()->Text(OldText());
iText = O;

return FALSE;

Although you are never likely to change the appearance of a toolbar object,

I'll describe the MsgPaint() method. Toolbar windows have a chiseled appearance

that is controlled by this method. MsgPaint() uses GPI line drawing to accomplish

this by displaying a basic rectangle with drawn lines of dark gray and white form

ing the shaded highlight.
After completing the basic look of the toolbar, MsgPaint() then invalidates

each button to ensure that they get repainted correctly.

PM CLASS LIBRARY I CHAPTER 6

11----------
11 MsgPaint \

11---11 Event: WM PAINT
II Cause: Issued by the OS when the window needs to be redrawn
II Description:This method gets called when the toolbar needs to be redrawn

II for any reason. This causes the chiseled look to be drawn around
11. * the too~bar window and forces each button to be repainted.
void C_TOOLBAR::MsgPa1nt(void *mpl, void *mp2)
{

HPS hps;
PO INTL pt;
RECTL re;
SWP swp;
int iCtr;

hps = WinBeginPaint(Window(), OL, &re);

II Fill the basic client area with the menu color first
WinFillRect(hps, &re, SYSCLR MENU);
GpiSetColor(hps, CLR_NEUTRAL-);

II Draw the chiseled window highlights (bottom and right first)
WinQueryWindowPos(Window(), &swp);
pt.x = O;
pt.y = O;
GpiMove(hps, &pt);
GpiSetColor(hps, SYSCLR_BUTTONDARK);
pt.x = swp.cx;
GpiLine(hps, &pt);
pt.y = swp.cy;
GpiLine(hps, &pt);
GpiSetColor(hps, SYSCLR_BUTTONLIGHT);
pt.x = O;
GpiLine(hps, &pt);
pt.y = O;
GpiLine(hps, &pt);

II Now draw the left and top edges
pt.x = 1;
pt.y = l;
GpiMove(hps, &pt);
GpiSetColor(hps, SYSCLR_BUTTONDARK);
pt.x = swp.cx - 2;
GpiLine(hps, &pt);

TOOLBAR CLASS 191

192

pt.y = swp.cy - 2;
GpiLine(hps, &pt);
GpiSetColor(hps, SYSCLR_BUTTONLIGHT);
pt.x = 1;
GpiLine(hps, &pt);
pt.y = 1;
GpiLine(hps, &pt);

WinEndPaint(hps);

II Invalidate all the buttons to force them to repaint
for(iCtr = O; iCtr < ButtonCount() - 1; iCtr++)
{

if((xcButton + iCtr))
(xcButton + iCtr)->Invalidate();

return FALSE;

The Status() routine is very simple indeed. It accepts a pointer to a status
line object and stores this pointer internally within the object so it can be refer
enced by the class methods.

11----------
11 Status() \
11---
11
II Description:
II This method sets the reference status line associated with the toolbar.
II This status line is used to display fly-over help.
II
11 Parameters:
II pxcStatusWindow - Pointer to status object to use for fly-over help
II
II Returns:
II void
II
void C TOOLBAR::Status(C STATUS *pxcStatusWindow)
{ - -

pxcStatus = pxcStatusWindow;

All toolbar buttons generate WM_COMMAND messages to the owner of
the toolbar window. The Control() method is called when a toolbar button press
operation has been completed. Control() translates these activities into the appro
priate WM_ COMMAND message for the owner window.

PM CLASS LIBRARY I CHAPTER 6

11-----------
11 Control() \
11---
11
11 Description:
II This method manages control messages for the toolbar. It determines
II which button invoked the control message, then passes this as a new
II WM_COMMAND message back to the owner of the toolbar object.
II
11 Parameters:
11 mpl - Control parameter containing button ID
II pxtCommandLookup - Pointer to button command table
II
11 Returns:
II void
II
void C_TOOLBAR::Control (ULONG mpl, T_BUTTON_CMD_TABLE *pxtCommandLookup)
{

int iCtr;

II Test for a parent window
if(ParentObject()->Window()
{

II Look at each button in the button table
iCtr = O;
while((pxtCommandLookup+iCtr)->iButtonid != O)
{

II If we found a match, send the associated WM COMMAND message
if(SHORT2FROMMP(mpl) == (pxtCommandLookup+iCtr)->iButtonid)
{

II Send the associated command ID to the owner window
ParentObject()->SendMsg(WM COMMAND,

(void *)(pxtCommandlookup+iCtr)->iCommandid, O);

iCtr++;

The CreateButtons() method in C_TOOLBAR accepts an array of button
definitions and creates a graphical button for each entry in the table.

C_TOOLBAR currently limits the maximum number of buttons to 15. This
is due to an apparent problem in the Borland C++ compiler associated with
dynamic memory allocation. When I originally designed the toolbar class, I used
IBM CSet++ and the button objects were allocated dynamically. Later, when com
piling the same code with the Borland compiler, I discovered that the toolbar code
was crashing due to a severe memory leak. The quick-and-dirty solution was to
allocate a fixed number of buttons statically.

TOOLBAR CLASS 193

194

11---------------
11 CreateButtons \
11---
11
II Description:
II This function accepts an array of button descriptions and will
II allocate an instance of a button for each item in the array.
II
11 Parameters:
II pxtButtonTable - Pointer to the button table
II
11 Returns:
II void
II
void C_TOOLBAR::CreateButtons(T_BUTTON_TABLE *pxtButtonTable)
{

int iCtr;
C_BUTTON_TBAR*pxcTemp;

II Determine the number of buttons in the button table
iButtonCount = O;
while((pxtButtonTable+iButtonCount)->iID != 0)

iButtonCount++;

II Create an instance of each button in the button table
for(iCtr = O; iCtr < i ButtonCount; iCtr++)
{

pxcTemp = (C_BUTTON_TBAR *)(xcButton + iCtr);

II Populate the new button
pxcTemp->ParentObject(this);
pxcTemp->Initialize((pxtButtonTable+iCtr)->iID,

(pxtButtonTable+iCtr)->iX, (pxtButtonTable+iCtr)->iY,
(pxtButtonTable+iCtr)->iidUp, (pxtButtonTable+iCtr)->iidDown,

(pxtButtonTable+iCtr)->iidDisable,
(pxtButtonTable+iCtr)->szText);

The ButtonData() method returns a pointer to a specific button object. The
caller supplies the identifier of the button whose object is to be returned, and But
tonData() scans the button array to find the requested button. If the identifier is not
located, a NULL value is returned.

PM CLASS LIBRARY I CHAPTER 6

11------------
11 ButtonData \
11---
11
II Description:
II This function returns a pointer to a button structure for the
II specified button id in the specified toolbar window.

II
II Parameters:
11 i Id - Id of button to return
II
11 Returns:
II void
II
C_BUTTON_TBAR *C_TOOLBAR::ButtonData(int iid)
{

int iCtr;

II Search each button in the table for the specified ID
for(iCtr = O; iCtr < iButtonCount; iCtr++)
{

II If we found our ID
if((xcButton + iCtr)->ID() == iid)
{

II Return a pointer to the button's object
return (xcButton + iCtr);

Toolbar buttons can also be toggled. This is useful for creating buttons that
are used to switch operating modes in a program. We will use a toggled button in
the FTP program later in the book in order to switch between binary and ASCII file
transfer modes.

ButtonToggle() accepts an identifier for the button that will be toggled. The
button array is scanned and when the button is located, its state is toggled. For
example, if the button is currently in its unpressed state, toggling will force the
button to switch to a depressed and locked state.

11--------------
11 ButtonToggle \
11---
11
II Description:
II This routine will toggle the specified button. This basically
II involves swapping the up and down graphics and repainting.
II

TOOLBAR CLASS 195

196

//Parameters:
// i Id - Id of button to toggle
II
//Returns:
// void
II
void C_TOOLBAR::ButtonToggle(int iButtonid)
{

int iCtr;

// Search each button in the table for the specified ID
for(iCtr = O; iCtr < iButtonCount; iCtr++)
{

// If we found the correct button
if((xcButton + iCtr)->ID() == iButtonid)
{

//Toggle it.
(xcButton + iCtr)->Toggle();
return;

The state of a button can also be set to a specific state. ButtonState() accepts
a button identifier and a button state. The valid button states are D_BUTION_UP,
D_BUTION_OOWN, and D_BUTION_DIS for the up, down, and disabled states,
respectively.

//-------------
// ButtonState \
//---
//
//Description:
// This routine will set the state of the specified button.
II
//Parameters:
// iButtonid - Id of button whose state will be changed
// iState - New button state
II
//Returns:
// void
II
void C_TOOLBAR::ButtonState(int iButtonid, int iState)
{

int iCtr;

//Search each button in the table for the specified ID
for(iCtr = O; iCtr < iButtonCount; iCtr++)

PM CLASS LIBRARY I CHAPTER 6

// If we found the button ID
if((xcButton + iCtr)->ID() == iButtonid)
{

//Set the buttons' state as specified
(xcButton + iCtr)->State(iState);
return;

The final method in the C_TOOLBAR class allows button windows to be
enabled or disabled. Like many other toolbar methods, ButtonEnable() requires a
button identifier; it also accepts a Boolean value to enable or disable the button.

//--------------
// ButtonEnable \
//---
//
//Description:
// This routine will enable/disable the specified button.
II
//Parameters:
// iButtonid - Id of button to enable/disable
// iValue - TRUE or FALSE to indicate new state
II
//Returns:
// void
II
void C_TOOLBAR::ButtonEnable(int iButtonid, int iValue)
{

int iCtr;

//Search each button in the table for the specified ID
for(iCtr = O; iCtr < iButtonCount; iCtr++)
{

// If we found the correct button ID
if((xcButton + iCtr)->ID() == iButtonid)
{

// Enable the button
if(!iValue)

(xcButton + iCtr)->State(D BUTTON DIS);
~se - -

(xcButton + iCtr)->State(iValue);
return;

TOOLBAR CLASS 197

198

The following code is actually that used in the news p~ogram ~ Pa~t III to
create a main toolbar. Notice that there is really no code associated with this-the

file contains mostly lookup tables for buttons and command refer~nces.
When the main toolbar is constructed, it creates a group of items known as

a button table. Button tables are descriptors that define the ID for the b~tton fol

lowed by the icon image resource identifiers use? to d~aw the ~ee possible sta.tes
for the button. The next item in the button descriptor 1s the string used to provide

fly-over help when the user moves the mouse over the button. Finally the X,Y loca

tion relative to the toolbar itself must be provided.
I misled you a little by saying there wasn't any code involved in creating

toolbars. The mechanism controlling fly-over help requires some knowledge of

where the text will be displayed. One of the C_TOOLBAR class methods manages

this. If fly-over help is used, the constructor must make a call to Status():

II Set the status bar object used by the toolbar
Status(pxcStatus);

The final step in the construction procedure is to create instan~es of a~ the

buttons defined in the button table. The constructor does this by passmg a pomter
to the table into the C_TOOLBAR::CreateButtons() method.

11-------------
11 Constructor\
11---
c TOOLBAR TOP::C TOOLBAR TOP(C WINDOW *pxcParentObj, C_STATUS *pxcStatus)
- - - - ~ C_TOOLBAR(pxcParentObj, D_TOP_TBAR, 40)

DECLARE BUTTON TABLE(xtButtons)
DECLARE BUTTON(OB CONFIG, DB_CONFIG_UP, DB_CONFIG_DN, 0,

- - "Configure the program", 8, 4)
DECLARE BUTTON(DB WNO GRP, DB GRP_UP, DB_GRP_DN, DB_GRP_DIS,

- - "T-;;ggle the list of available groups", 48, 4)
DECLARE BUTTON(DB_WND_SUB, DB_SUB_UP, DB_SUB_DN, DB_SUB_DIS,

- "Toggle the list of current subscriptions", 80, 4)
END_BUTTON_TABLE

II Set the status bar object used by the toolbar
Status(pxcStatus);

II Add some toolbar buttons
CreateButtons(xtButtons);

One other method is required to completely implement a toolbar. The Con

trol() method defines a Button-Command table that translates button pr~s~s into

equivalent WM_COMMAND messages, as you will see when ne_ws 1s imple

mented later. The window object that owns the toolbar must mtercept the

PM CLASS LIBRARY I CHAPTER 6

WM_CONTROL message (since a toolbar is a control) to watch for activity from

the toolbar. If the WM_ CONTROL message handler determines that a message is

originating from the toolbar, it calls the toolbar's Control() methods to deal with
the situation.

Again, we have to write a line of code to call the C_TOOLBAR::Control()
method, passing it the Button-Command table for this toolbar.

11---------
11 Control \

11---
void C_TOOLBAR_TOP::Control(ULONG mpl)
{

II Button-Command cross reference
DECLARE_BUTTON_CMD_TABLE(xtCommandLookup)

DECLARE BUTTON CMD(DB CONFIG, OM CONFIGURE)
DECLARE-BUTTON-CMD(DB-WNO GRP, OM GROUPS)
DECLARE=BUTTON=CMD(DB=WND=SUB, DM=SUBSCRIPTIONS)

END BUTTON CMD TABLE - - -

II Call the parent controller to process the items
C_TOOLBAR::Control(mpl, xtCommandLookup };

As you can see, this code builds a complete toolbar with three lines of code
and a couple of simple tables. How much easier could it be? This code will remain
unchanged for most of the toolbars you will ever write.

The source of almost every toolbar developed in Part III is the same. Once

you create the first one, you can make new toolbar objects in a matter of minutes.

Edit Class

Most applications built for Presentation Manager need to display lines of data or

collect responses from the user. There are many methods in place to accomplish

these tasks, but the most common of these is an edit control. Edit controls are win

dows capable of editing or displaying single lines of information. The control pro

vided by Presentation Manager fully supports cut and paste operations, so no
additional code is required to manipulate the clipboard.

PMCLASS wraps the PM API for edit controls and provides a very simple
C_EDIT class. Though this class contains only three constructors, it is derived from

the C_WINDOW_CHILD and C_WINDOW classes, which means that it has sur
prising capabilities. For example, an editor control can be moved, or resized, or the
colors or font can be changed using methods from the parent classes.

The C_EDIT class is shown in the following diagram.

EDIT CLASS 199

200

C_EDIT

I C_EDIT()

Figure 6·14 C_EDIT class

The header file for C_EDIT is shown in Listing 6-13:

class C_EDIT
{

public C_WINDOW_CHILD

} ;

public:
_Export
_Export
_Export

void

EDIT(C WINDOW *pxcParentObj, int iID, int iMode);
C EDIT(C WINDOW *pxcParentObj, int iIO);
C=EDIT(C=DIALOG *pxcParentObj, int iIO);

_Export Textlimit(int ilimit);

Listing 6·13 EDIT.HPP - Class definition for C_EDIT

The first class constructor is used to create edit control at run time. It accepts
a pointer to an owner window object and a window identifier, as well as a mode
parameter that can be used to apply any additional operating system specific con
trol modifiers.

11-------------
11 Constructor\
11---
11
II Description:
II This constructor creates an instance of the C_EDIT class with
II optional programmer-specified edit parameters.
II
I I Parameters:
II pxcParentObj
11 i ID

II
II

iMode

- Owner object
- Resource ID of the edit control
- Operating system specifc configuration parameters

C EDIT::C EDIT(C WINDOW *pxcParentObj, int iIO, int iMode)
- - - C_WINDOW_CHILD(pxcParentObj, 0)

ClassName(WC_ENTRYFIELO);
Create(iID, iMode, "", 0, 0, 90, 30);

The second constructor functions in much the same manner as the first.
However, it predefines the edit control to the most common configuration and
omits the mode parameters. This is the constructor most frequently used.

PM CLASS LIBRARY I CHAPTER 6

11-------------
11 Constructor\

11---
11
II Description:
II This constructor creates an instance of the C_EOIT class with
II predefined control parameters.
II
11 Parameters:
11 pxcParentObj - Owner object
II iIO - Resource IO of the edit control
II
C_EOIT::C_EDIT(C_WINDOW *pxcParentObj, int iIO)

C_WINDOW_CHILD(pxcParentObj, 0)

ClassName(WC_ENTRYFIELD);
Create(ilO, WS_VISIBLE I ES_MARGIN I ES_AUTOSCROLL, " ", 0, 0, 90, 30);

The final constructor is used to refer to edit controls defined within dialog
boxes. These controls are configured by the dialog editor when the control is cre
ated, so there is no need to provide a parameter to allow additional configuration.

11-------------
11 Constructor\

11---
11
II Description:
II This constructor creates an instance of the C EDIT class for an
II edit control that is part of a dialog box window.
II
11 Parameters:
11 pxcParentObj - Owner object
II iID - Resource ID of the edit control
II
llC_EOIT::C_EOIT(C_DIALOG *pxcParentObj, int iID)

: C_WINOOW_CHILD((C_WINDOW *)pxcParentObj, 0)

ClassName(WC_ENTRYFIELO);

II The window was created by the dialog system, so all we need to
II do is attach to the current resource
C_WINOOW::Create(ParentObject()->Window(),

WinWindowFromID(ParentObject()->Window(), iID));

C_EDIT implements a single method called TextLimit(). This code is used to
set the maximum number of characters that the edit control can accept. You can
use this call to set an input limit in order to prevent buffer overrun resulting from
a user entering more data than expected.

EDIT CLASS 201

202

11-------------
11 Textlimit() \
11---
11
I I Description:
II This method set the text limit of the edit control to a specified number

II of characters. It simply wraps the PM API that performs the same operation.

II
11 Parameters:
II ilimit - Character limit to set for the control

II
11 Returns:
II void
II
void C_EDIT::Textlimit(int ilimit)
{

II Call the API to set the character limit
SendMsg(EM_SETTEXTLIMIT, MPFROMSHORT(ilimit), 0);

Multiline Editor Class

There will be many occasions when you write applications for which you will

want to display an editor window to permit the user to examine and possibly

modify multiple lines of information. Several of the applications that ship with

OS/2 can do this-E, the OS/2 system editor, for example, uses a multiline editor

or MLE control to load a selected file for the user to edit. At the completion of the

edit process, the user can save the contents of the MLE back to the disk.

The PMCLASS library offers extensive support for MLE controls; if you

wanted, you could duplicate the functionality of E with less than 300 lines of appli

cation code. The reason for this simple implementation is that the C_MLE class in

the PMCLASS library implements much of the functionality you need. C_MLE

also adds some additional functionality that is not provided by the Presentation

Manager control: the ability to save and load files, for example.

The news and FfP programs use this class as part of the file/article viewer

window code. As you will see later, the viewer creates the C_MLE object, then

loads a file to it with a single line of code. If you have had experience with the OS/2

MLE control, you will appreciate the magnitude of this accomplishment.

The C_MLE class is illustrated in Figure 6-15:

C_MLE

MLE_SEARCHDATA xtSearch; C_MLE()

void ReadOnlyStatus()

void Word Wrap()

PM CLASS LIBRARY I CHAPTER 6

C_MLE (Continued) '

void ResetDirtyBufferFlag()
int IsBufferDirty()

void Undo()

void Copy()
void Cut()

void Paste()

void Clear()

LONG Buffer Length()

void DisableRefresh{)

void EnableRefresh{)

void Insert()
void Delete{)

void Select()
void QuerySelection()

void Transfer Buffer{)

void ExportBuffer()
void FindFirst{)

void FindNext()

LONG Line{)

LONG Column{)

LONG NumberOfLines()

void Load{)
void Save{)

Figure 6·15 C_MLE class

The header file for C_MLE is shown in Listing 6-14:

class C_MLE : public C WINDOW CHILD
{ - -

private:
MLE_SEARCHDATAxtSearch;

public:
_Export C_MLE(C_WINDOW *pxcParentObj, int iMLEID, int iMode);
_Export C_MLE(C_WINDOW *pxcParentObj, int iMLEID);
_Export C_MLE(C_DIALOG *pxcParentObj, int iMLEID);
void _Export ReadOnlyStatus(short iBool);
void _Export WordWrap(short iBool);
void _Export ResetDirtyBufferFlag(void);
int _Export IsBufferDirty(void);
void _Export Undo(void);
void _Export Copy(void);

MUL TILINE EDITOR CLASS 203

204

} ;

void _Export
void _Export
void _Export
LONG _Export
void _Export
void _Export
void _Export
void _Export
void _Export
void _Export
void _Export
void _Export
int _Export
int _Export
int _Export
int _Export
LONG _Export
LONG _Export
LONG _Export
void _Export
void _Export

Cut(void);
Paste(void);
Clear(void);
BufferLength(void);
DisableRefresh(void);
EnableRefresh(void);
Insert(char *szString);
Delete(LONG lStart, LONG lCount);
Select(LONG lStart, LONG lEnd);
QuerySelection(LONG *pAnchor, LONG *pCursor);
TransferBuffer(char *szString, LONG lSize);
ExportBuffer(LONG *ipStart, LONG *ipEnd);
FindFirst(char *szString, int iCase);
FindNext(int iCase);
FindFromCursor(char *szString, int iCase);
ChangeAll (char *szFind, char *szReplace, int iCase);
Line(LONG lCursor);
Column(LONG lLine);
NumberOfLines(void);
Load(C_STATUS *pxcStatus, char *szFilename);
Save(C_STATUS *pxcStatus, char *szFilename);

Listing 6-14 MLE.HPP - Class definition for C_MLE

C_MLE implements three constructors; which_ one you chaos~ to ca?
depends on your specific needs. The first constructor is the most g~nenc an~ is
shown below. This constructor accepts a pointer to a parent I owner window ob1ect
and an integer ID used by PM. The third parameter can include any PM-specific
attributes for a multiline edit control window. This includes attributes that can be
"ORed" together, such as MLS_ VSCROLL I MLS_HSCROLL I MLS_BORDER,
which will enable scrollbars on the MLE and force it to draw a border. These
attributes are summarized below.

MLS_BORDER

MLS_READONLY

MLS_WORDWRAP

MLS_HSCROLL

MLS_ VSCROLL

MLS_IGNORETAB

MLS_DISABLEUNOO

Draws a thin border around the MLE window.

Prevents the user from altering the contents of the
MLEwindow.

Enables text word-wrapping in the MLE window.

Provides a horizontal scroll bar in the MLE window.

Provides a vertical scroll bar in the MLE window.

Tab characters are ignored by the MLE window.

Undo actions are not permitted by the MLE.

PM CLASS LIBRARY I CHAPTER 6

The code makes two calls. The first sets the class name to WC_MLE, the
OS/2 standard name for a multiline edit control. The second call invokes the
C_ WINOOW _CHILD::Create() method to create a run-time instance of an MLE.

Use this constructor only if you do not want the C_MLE default operation,
which includes the MLS_ parameters shown in the previous paragraph.

11-------------
11 Constructor \
11---
11
11 Parameters:
II pxcParentObj - Pointer to parent window object which owns this
11 iMLEID - ID of the control
II iMode - OS specific parameters to configure the MLE
C_MLE::C_MLE(C_WINDOW *pxcParentObj, int iMLEID, int iMode)

: C_WINDOW_CHILD(pxcParentObj, 0)

II Set the class to the default OSl2 control name
ClassName(WC_MLE);

II Create the MLE control
Create(iMLEID, iMode, " ", 0, 0, 90, 30);

The second constructor performs a similar operation to the one just
described, except that it does not accept the additional mode parameters. Instead,
it defaults the MLE to include both horizontal and vertical scrollbars and a thin
border and initially makes the MLE visible.

11-------------
11 Constructor \
11---
11
11 Parameters:
II pxcParentObj - Pointer to parent window object which owns this
II iMLEID - ID of the control
C_MLE::C_MLE(C_WINDOW *pxcParentObj, int iMLEID)

: C_WINDOW_CHILD(pxcParentObj, 0)

II Set the class to the default OSl2 control name
ClassName(WC_MLE);

II Create the MLE control with some default characteristics
Create(iMLEID, WS_VISIBLE MLS VSCROLL I MLS_HSCROLL I MLS_BORDER,

"", 0, 0, 90, 30);

MULTILINE EDITOR CLASS 205

206

The final C_MLE constructor is a special case constructor that manages
MLE controls embedded in dialog windows stored in resource files. Previous con
structors are used to create an MLE control at run time, while this one assumes that
the MLE already exists, as it would after the creation of a dialog box. No mode
parameters can be specified for this version of the constructor because all the MLE
characteristics are defined in the resource file.

//-------------
//Constructor\
/!---
//
// Parameters:
// pxcParentObj - Pointer to parent dialog object which owns this
// iMLEID - ID of the control
// iMode - OS specific parameters to configure the MLE
C MLE::C MLE(C DIALOG *pxcParentObj, int iMLEID)
- - - : C_WINDOW_CHILD((C_WINDOW *)pxcParentObj, 0)

//Set the class to the default OS/2 control name
ClassName(WC_MLE);

// The window was created by the dialog system, so all we need to
//do is associate the instance with a resource from the RES file
C WINDOW::Create(ParentObject()->Window(),
- WinWindowFromID(ParentObject()->Window(), iMLEID));

If you are creating an MLE viewer in which you want the user to make no
modifications, you can invoke the ReadOnlyStatus() method. This routine wraps a
PM window message call to MLM_SETREADONLY, supplying it with the appro
priate enable/disable flag.

//----------------
// ReadOnlyStatus \

//---
//
// Parameters:
// iBool - Set the read-only status of the MLE on or off

II
// Returns :
// none
II
void C_MLE::ReadOnlyStatus(short iBool)
{

//Toggle the editor's read-only status
SendMsg(MLM_SETREADONLY, MPFROMSHORT(iBool), 0);

PM CLASS LIBRARY I CHAPTER 6

The WordWr~p() m~~od in C_.MLE has been provided to toggle the pres
ence of word wrappmg within the editor control. This method accepts a Boolean
value that enables or disables wrapping.

/!---------
// WordWrap \

//---
//
// Parameters:
// i Boo l - Set the word-wrap state of the MLE on or off
II
//Returns:
// none
II
void C_MLE::WordWrap(short iBool
{

II Set the word-wrap state
SendMsg(MLM_SETWRAP, MPFROMSHORT(iBool), O);

. . After modifications.have been made to the text buffer, exiting from most
editing pr~grams usually mvolves stepping through a dialog warning you that
changes will be lost. The dialog then permits you to save your changes to a file.

The C_MLE class provides two methods that combine to implement this
cap.ability. ResetDirtyBufferFlag() can be called to reset the state of the "dirty" flag,
which OS/2 sets automatically for the MLE when the user modifies the buffer. This
method is called by the C_MLE::Load() and Save() methods.

//----------------------
// ResetDirtyBufferFlag \

jj---
11 Description:
II This method resets the detection mechanism used to determine
// if the MLE buffer has changed.
II
// Parameters:
// none
II
// Returns:
II none
II
void C_MLE::ResetDirtyBufferFlag(void)
{

II Clear the dirty buffer indicator
SendMsg(MLM_SETCHANGED, 0, 0);

MULTILINE EDITOR CLASS
207

208

A program using the C_MLE control can query the IsBufferDirty() method

to determine the buffer has changed since the last Save() or Load() operation.

IsBufferDirty() returns a Boolean value representing the state of the editor buffer.

11---------------
11 IsBufferDirty \
11---
11
II Description:
11 This method returns the states of the "dirty buffer" flag which a
II program can use to determine if the user has made any changes
II to the MLE contents.
II
11 Parameters:
11 none
II
11 Returns:
II TRUE or FALSE indicating the dirtiness of the MLE

II
int C_MLE::IsBufferDirty(void)
{

II Toggle the editor's read-only status
return (int)SendMsg(MLM_QUERVCHANGED, 0, 0);

The next several methods manage clipboard interaction with the MLE con

trol. These operations are so common when implementing MLE-equipped appli

cations that they have become part of the basic functionality for the C_MLE class.

For the most part, operations on the CUA standard "Edit" menu will equate

directly to calls to these methods.
The first of these clipboard methods is Copy(), which determines the range

of MLE text that is selected and copies that text to the OS/2 clipboard.

11------
11 Copy\
11---
11
11 Returns:
II none
II
void C_MLE::Copy{ void)
{

II Copy selected text to the clipboard
SendMsg(MLM_COPV, 0, 0):

PM CLASS LIBRARY I CHAPTER 6

Cut() is similar to Copy() except that it removes the selected text from the
MLE window. The text that is removed is placed on the system clipboard.

11-----
11 Cut \

11---
11
11 Returns:
II none
II
void C_MLE::Cut(void)
{

II Cut selected text to the clipboard
SendMsg(MLM_CUT, 0, 0):

The Paste() method copies whatever text is currently sitting on the OS/2

system clipboard and writes it into the MLE window at the current insertion point
(i.e. the location of the cursor). Any information that was on the clipboard remains
there for subsequent pasting.

11-------
11 Paste \

11---11
II Returns:
11 none
II
void C MLE::Paste(void)
{ -

II Paste clipboard contents into editor
SendMsg(MLM_PASTE, 0, 0);

Users of your applications are bound to make mistakes and, realizing this,
you should provide the capability to reverse out of editing operations. C_MLE

implemented an Undo() method that will undo the user's last edit operation.

11------
11 UnDo \

11---11
II Returns:
II none
II
void C_MLE::Undo{ void)
{

MUL TILINE EDITOR CLASS 209

210

II Undo the last edit operation
SendMsg(MLM_UNDO, 0, 0);

The final text manipulation method is Clear(), which does not interact with

the clipboard. Instead, Clear() finds the selected region of text in the MLE window

and simply deletes it.

11-------
11 Clear \
11---
11
II Returns:
11 none
II
void C_MLE::Clear(void)
{

II Clear the current text selection
SendMsg(MLM_CLEAR, 0, 0);

The BufferLength() method returns the number of characters (including

any line breaks, tab characters, etc.) to the caller. BufferLength() is used internally

in the C_MLE class, but has been made public because it may be useful in some

applications. For example, you may be writing an editor in which you would like

to have the buffer size in characters displayed in the status line. Most program

mer's editors will perform this operation.

11--------------
11 Bufferlength \

11---
11
11 Returns:
II Number of bytes currently stored in the MLE

II
LONG C_MLE::Bufferlength(void)
{

II Return the number of bytes in the editor control

return (LONG)SendMsg(MLM_QUERYTEXTLENGTH, 0, 0);

The next two methods are described together. The EnableRefresh() and Dis

ableRefresh() methods permit you to enable or disable updates to the MLE win

dow. This allows you to add several lines of text without causing the MLE to

repaint (and possibly flicker) . These operations are used typically when loading or

unloading the MLE window text, and are called by the Load() and Save() methods

shown later.

PM CLASS LIBRARY I CHAPTER 6

11----------------
11 DisableRefresh \

11---11
11 Returns:
II none
void C_MLE::DisableRefresh(void)
{

II Disable MLE refreshing
SendMsg(MLM_DISABLEREFRESH, 0, O);

..
11---------------
11 EnableRefresh \

~~---
11 Returns:
II none
void C_MLE::EnableRefresh(void)
{

II Enable editor refreshing
SendMsg(MLM_ENABLEREFRESH, 0, O);

}

When you need. to insert a buffer of text into an MLE, you can use the

In~rt() method. The stnng pointer that Insert() accepts as a parameter can point to

a single character or a buffer containing a large block of text. The only restriction is

that the buffer must be NULL terminated.

. If you take a quick. pee~ at the Load() method code, you will see that it uses

thi~ method to loa~ text files into the window. Instead of inserting a line at a time,

notice that Load() inserts a block of up to 2 Kbytes. This is done to improve the per
formance of loading.

~omething t~ bear in mind when loading an MLE control with Insert()

depending on the s.1ze of your insertion buffer, you may want to consider a sepa

rate thread for loading the MLE window. This can be a time-intensive task and will

hold up system operation if the Yw second rule is violated.

11--------
11 Insert \

11--11 Parameters: -----------------------

jj szString - Pointer to string data to be inserted into the MLE

11 Returns:
II none
void C_MLE::Insert(char *szString)
{

MUL TILINE EDITOR CLASS 211

212

II Insert the supplied text into the MLE at the current insertion point

SendMsg(MLM_INSERT, (void *)szString, 0);

Since the MLE is a completely interactive editor, the user has been provided

with the capability of inserting or deleting text on demand. However, as a pro

grammer you may find it useful to delete blocks of text from within code as well.

A good example of this in an editor would be a situation in which the user wanted

to load a different file into the window. The code must first remove the current edi

tor contents before loading the new text.
The Delete() method accepts a byte offset within the MLE window and a

character count. It invokes the MLM_DELETE message in the MLE manager to

start from the specified offset to delete the specified number of characters. Text

repositioning and reformatting is managed automatically by the MLE control

code.

11--------
11 Oelete \
11---
11 Parameters :
11 lStart
II
II

lCount

11 Returns:
II none

- Starting byte offset in MLE buffer for the delete

- Number of bytes to delete from the MLE

void C_MLE::Delete(LONG lStart, LONG lCount)
{

II Delete a range of text from the editor starting at byte lStart fo r

II lCount bytes.
SendMsg(MLM_DELETE, lStart, lCount);

Under programmer control, an MLE control can also mimic the selection

mechanism that is typically invoked by the user to select blocks of text. The Select()

method accomplishes this by accepting a starting and ending byte offset in the

MLE buffer and issuing the MLM_SETSEL message in the PM control code.

11--------
11 Select \
11---
11 Parameters:
II lStart - Starting byte offset in MLE buffer for the selection

11 l End - Ending byte offset in MLE buffer for the selecti on

II
11 Returns:
II none
void C_MLE::Select(LONG lStart, LONG !End)

PM CLASS LIBRARY I CHAPTER 6

II Select the specified range of text
SendMsg(MLM_SETSEL, !Start, lEnd);

The opposite . of setting the selection is the query operation; the C_MLE

method QuerySelection() manages this functionality. This method makes two calls

to the PM_ MLE control code to return the current anchor point and cursor position

representing the start and end offsets of the current selection.

11----------------
11 QuerySelection \

11---11 Parameters:
II pAnchor
II
II
II
II

pCursor

- Pointer to location where selection anchor point
byte offset will be stored

- Pointer to location where selection cursor byte
offset will be stored

11 Returns:
II none
void C_MLE::QuerySelection(LONG *pAnchor, LONG *pCursor)
{

II Query the current anchor point

*pAnchor = (LONG)SendMsg(MLM_QUERYSEL, MPFROMSHORT(MLFQS_ANCHORSEL),0);

II Query the current cursor location

*pCursor = (LONG)SendMsg(MLM_QUERYSEL, MPFROMSHORT(MLFQS_CURSORSEL),0);

In order to read sections of the MLE text buffer into a C/C++ data area PM

has certain restri~tio~ n?t typical on other platforms. To transfer any data fro:n an

MLE, you must first md1cate where the output buffer is located. C_MLE provides

~ Tran~ferBuffer() method to assign this address. Once this address is set, data

rmporting and exporting operations can be performed.

TransferBuffer() is a simple wrapper for the MLM_SETIMPORTEXPORT

message. It accepts a pointer to the transfer buffer and the size of the buffer and

passes these to the MLE control code.

11----------------
11 TransferBuffer \

11---11 Description:

II Th~s ~etho~ se~s the buffer where MLE transfers will take place.

II This is pr1mar1ly used by OSl2 to control the import and export
II of text from the MLE window.
II

MULTILINE EDITOR CLASS 213

214

// Parameters:
// szString
// lSize
II
// Returns:
// none
II

- Pointer to import/export buffer
- Size of the buffer

void C_MLE::TransferBuffer(char *szString, LONG lSize)
{

//Set the import/export transfer buffer
SendMsg(MLM_SETIMPORTEXPORT, (void *)szString, lSize);

Assuming that the transfer buffer has been set correctly, the ExportBuffer()

method can be called to extract a block of text from the MLE window into the

transfer area. The Save() method uses this method to extract text it writes to a file.

This method accepts pointers to two parameters representing the beginning

and end byte offsets of the MLE text block which is being transferred.

//--------------
// ExportBuffer \
/!---
//Description:
// This method exports the text in the specified range to the transfer
// buffer.
II
// Parameters:
// ipStart
// ipEnd
II
// Returns:
II
II

none

- Byte offset to start of export
- Byte offset for end of export

void C_MLE::ExportBuffer(
{

LONG *ipStart, LONG *ipEnd)

SendMsg(MLM_EXPORT, (void *)ipStart, (void *)ipEnd);

The C_MLE class also offers complete support for text searches within the

MLE window. The FindFirst() and find Next() methods implement this capability.

Both methods use the xtSearch class attribute, which is provided by Presentation

Manager to hold search setup parameters.
FindFirst() accepts a pointer to the search string and initializes the xtSearch

attributes to perform a search for an exact match, without regard to the text case. If

a match is found, the xtSearch attribute will be returned with information that can

be used to perform subsequent searches. If no search string is located in the MLE
buffer, the method will produce an error tone.

PM CLASS LIBRARY I CHAPTER 6

"':1en performing FindNext() operations, an error tone will be produced if
the prev10us search returned no result (xtSearch.cchFind = O) or there are no fur

ther matches. One important thing to note with search operations is that the cursor

and MLE text view will be updated so that any matching string will be placed in

the viewable portion of the MLE. Window scrolling will be performed, if required,
by the control itself.

/!----------
// FindFirst \

//---------------------~---
//Description:
// This method searches for the first instance of the specified string
// within the editor window.
II
// Parameters:
// szString - String to search for
II
//Returns:
// none
II
void C_MLE::FindFirst(char *szString)
{

memset(&xtSearch, 0, sizeof(MLE SEARCHDATA));
xtSearch.cb = sizeof(MLE SEARCHDATA);
xtSearch.pchFind = szStri~g;
xtSearch.cchFind = (short)strlen(szString);
xtSearch.iptStart = O;
xtSearch.iptStop = -1;
if(!(BOOL)SendMsg(MLM_SEARCH, (void *)MLFSEARCH SELECTMATCH,

(void *)&xtSearch))-

DosBeep(100, 100);

//---------
// FindNext \

//---
//Description:
II This method searches for the next instance of the previously defined
// search string.
II
// Parameters:
// none
II
//Returns:
// none
II

MUL TILINE EDITOR CLASS 215

216

void C_MLE::FindNext(void)
{

if(xtSearch.cchFind > 0)
{

xtSearch.iptStart = -1;
if(!(BOOL)SendMsg(MLM_SEARCH, (void *)MLFSEARCH_SELECTMATCH,

(void *)&xtSearch))

DosBeep(100, 100);

else
{

DosBeep(100, 100);

The C_MLE class provides several detection methods used to determine the

location of the cursor. Line() is the first of these and will return the line number

within the text buffer containing the cursor.
Though this method's use is limited primarily to internal class code, you

may find it valuable if you are writing an editor that needs to display the cursor

location. It accepts a single parameter, which is the byte offset of the cursor within

MLE text buffer.

11------
11 Line\
11---
11 Description:
II This method returns the line number within the editor where the
II specified buffer offset occurs.
II
11 Parameters:
II lPointer - Location within the editor buffer

II
II Returns:
II LONG - Line number containing the specified point

II
LONG C_MLE::Line(LONG lPointer)
{

II Return the line number where the specified pointer is
return (LONG)SendMsg(MLM_LINEFROMCHAR, (void *)lPointer, 0);

The second detection mechanism is Column(). This method returns the col

umn number of the cursor based on the line number supplied by the caller. By

using the Line() method followed by a call to Column() it is possible to determine

both the line and column number of the cursor.

PM CLASS LIBRARY I CHAPTER 6

11--------
11 Column \

11---11 Description:
II This method returns the column number within specified line where the
II cursor is currently located.
II
11 Parameters:
II lLine - Line number to search for cursor column
II
II Returns:
II LONG - Column number containing the cursor
II
LONG C_MLE::Column(LONG lLine)
{

II Return the column on the specified line where the cursor i s
return (LONG)SendMsg(MLM_CHARFROMLINE, (void *)lLine,O);

If you need to determine the number of lines of text in an MLE window you

can call the NumberOfLines() method. This will return a count of all lines includ
ing those that are blank.

11---------------
11 NumberOfLines \

11---11 Description:
II This method returns the number of text lines within the editor.
II
II Parameters:
II none
II
11 Returns:
11 LONG - Number of lines in the editor
II
LONG C_MLE::NumberOfLines(void)
{

II Return the number of lines in the MLE
return (LONG)SendMsg(MLM_QUERYLINECOUNT, 0, O);

The C_MLE class provides complete support for loading files directly in the

MLE window. The Load() member function performs this task. Load accepts a file

name and a pointer to a C_STATUS window that will be used to display load sta

tus. This inclusion of a status window is not mandatory, and NULL may be
substituted if no feedback is required.

MULTILINE EDITOR CLASS 217

218

Load() first removes all previously loaded text by calling the Delete() mem
ber function, then disables updates to the MLE in order to prevent unnecessary
screen flicker while text is being loaded. In order to improve perform~ce, Load9
reads lines of text from the specified file into a large static buffer until approXl
mately 2 Kbytes are acquired. At this point the buffer is transferred to the MLE
window and reinitialized for the next block of text. This is done to reduce the num
ber of writes required for the MLE, since each one involves a significant overhead
in Presentation Manager. . When the file is transferred to the MLE, it is re-enabled and the cursor is
repositioned to the first line and column.

11------
11 Load \
11---
11 Description: . . . II This method loads the specified file contents into the editor window.
II
11 Parameters:

- Pointer to optional status line where load status
will be displayed

II pxcStatus
II
II
II

szFi 1 eName - Filename to load

11 Returns:
11 none
II
void C_MLE::Load(C_STATUS *pxcStatus, char *szFileName)
{

char szBuffer[3000];
char szString[512];
FILE *hFil e;

II Disable refresh and ensure that the MLE is erased
Delete(0, BufferLength());
SendMsg(MLM FORMAT, MPFROMSHORT(MLFIE_CFTEXT) , 0);
DisableRefresh();

if(pxcStatus)
pxcStatus->Text("Loading .. . ");

hFile = fopen(szFileName, "rt");
if(hFile)
{

strcpy(szBuffer, "");
while(!feof(hFile) && fgets(szString, 512 , hFile))
{

II Replace EOL with a NULL

PM CLASS LIBRARY I CHAPTER 6

if(strstr(szString, "\r"))
*strstr(szString, "\r") = O;

if(strstr(szString, "\n"))
*strstr(szString, "\n") = O;

strcat(szBuffer, szString };
strcat(szBuffer, "\r\n");

if(strlen(szBuffer) > 2048)
{

Insert(szBuffer);
strcpy(szBuffer, "");

Insert(szBuffer);

fclose(hFile };

II Clear the selection and refresh the window
Select(0, 0);
EnableRefresh();

if(pxcStatus)
pxcStatus->Text("Loading Complete •.. ");

11 Reset the "dirty" buffer flag so we can detect any changes
ResetDirtyBufferFlag();

The complementary operation to loading a file is saving. The C_MLE class
also provides a Save() method, used to transfer text from the MLE window back to
a specified filename. This routine consists primarily of a loop to extract every line
in the MLE. It first determines byte offset of the start of each line and the length of
the line and exports the information to a temporary string. Each line is then writ
ten to the output file.

A very important point needs to be made with regard to Load() and Save().
These methods can consume a relatively large amount of CPU time, depending on
the size of file. For this reason, these methods should never be called from the main
thread of execution. Doing so would most likely violate the 1110 second rule and
result in system slowdowns. The proper use of these methods requires a separate
thread of execution, of which you will see examples in the news and FTP applica
tions in Part ill of this book.

MUL TILINE EDITOR CLASS 219

220

11------
11 Save\ --------------------------------------11-------------------------------------
II Description: h 'f' d file II This method saves the edit window contents tote spec1 1e ·
II
11 Parameters: _ Pointer to optional status line where save status

will be displayed
II pxcStatus
II
II
II

szFileName - Filename to save

11 Returns:
- Line number containing the specified point II LONG

II s * st t char *szFileName) void C_MLE::Save(C_STATU pxc a us,
{

char
FILE
IPT
IPT
LONG
LONG

szString[4096];
*hFil e;
iPoint;
iEndPoint;
lTotal;
lCount;

hFile = fopen(szFileName, "w") ;

lTotal = NumberOfLines();

SendMsg(MLM_FORMAT, MPFROMSHORT(MLFIE_NOTRANS }, 0 };
TransferBuffer(szString, 4096 };
iPoint = O;

for(lCount = O; lCount < lTotal; lCount++)
{

II Get the text parameter for the current line
iPoint =Column(lCount);) iEndPoint = (IPT)SendMsg(MLM_QUERYLINELENGTH, (void *}iPoint, 0 ;

II Get the text for the current line
memset(szString, 0, 4096);
ExportBuffer(&iPoint, &iEndPoint);

if(strlen(szString)
{

II Replace EOL with a NULL
if(strstr(szString, "\r"))

*strstr(szString, "\r") = O;
if(strstr(szString, "\n"))

*strstr(szString, "\n") = O;

PM CLASS LIBRARY I CHAPTER 6

fprintf(hFile, "%s\r\n", szString);

fclose(hFile);

if(pxcStatus)
pxcStatus->Text ("Saving Complete .•. ") ;

11 Reset the "dirty" buffer flag so we can detect any changes
ResetDirtyBufferFlag();

CUA Container Class

The container control is a special CUA'91 control supplied by Presentation Man
ager. A container is simply a very fancy list box, which permits the user to select
items or scroll through a list of items. However, this is where the comparison ends.

Container controls support a myriad of enhancements over a normal list
box. For example, a container can be configured in one of several views, including
a detail view which can display fields for each record item, or an icon view that
permits rearrangement of items and caters to the direct manipulation capabilities
of 05/2. There are other views as well, but the most unique view is the tree view.
Tree view permits container items to have an infinite number of children and
grandchildren, and produces a hierarchical list of items.

Each of the views offers its own capabilities and limitations. Detail view
supports columns and multiple selection, tree supports a dichotomy display but
prevents multiple selection. In all views, however, it is easy to embed icons or
bitmaps-something much more difficult to accomplish with a simple list box.

The PMCLASS library implements container control support. However,
because this is a CUA'91 control, it has no direct equivalent in Windows; portabil
ity was not a prime concern when designing it. In particular, detail view still
requires that you write PM API code rather than creating objects for each column.
Though I have not devoted much time to a C++ column class, you should be able
to implement one in your own designs if you dislike the thought of a hybrid
CIC++ application.

The C_CONTAINER class in the PMCLASS library implements the defini
tion for the container class. This class is illustrated in the following figure.

C_CONTAINER

int iView c_coNTAINER()
-C_CONTAINER()
void Setup()

CUA CONTAINER CL.ASS 221

C_CONTAINER (Continued)

void Insert()
void InsertUpdate()
void Remove()
void Erase()
void Redraw()
void Sort()
void *Search()
void *ParentRecord()
void *FirstRecord()
void *MemoryFirstRecord()
void *MemoryNextRecord()
void *NextRecord()
void *PreviousRecord()
void *FirstChild()
void *LastChild()
void *FirstSelected()
void *NextSelected()
void Expand Tree()
void Compress Tree()
void SelectRecord()

Figure 6·16 C_CONTAINER class

The header file for C_ CONTAINER is shown in Listing 6-15:

11-----------------------------------
11 View definitions for a container\
11--
#define D VIEW NONE -1 II Invisible (no view)
#define D-VIEW-DETAIL TITLE 0 II Detail view with titles
#define D-VIEW-DETAIL- 1 II Detail view - no titles
#define D-VIEW-TREE 2 II Tree View
#define D=VIEW=ICON 3 II Icon View (Currently unsupported)

11------------------------------
11 C_CONTAINER class definition\
11---
class C_CONTAINER : public C_WINDOW_CHILD
{

private:
int iView; II Display view

public:

222 PM CLASS LIBRARY I CHAPTER 6

};

_Export

_Export

_Export

C_CONTAINER(C_WINDOW *pxcParentObj, int iID, int iView,
int iFlags, int iMode);

C_CONTAINER(C_WINDOW *pxcParentObj, int iID, int iView,
int i Fl ags) ;

C CONTAINER(C DIALOG *pxcParentObj, int iID, int iView,
- - int i Flags) ;

_Export -C_CONTAINER(void);
void _Export Setup(int iView, int iFlags);
void* _Export Allocate(ULONG iLength, USHORT iCtr);
void _Export Insert(void *pParent, void *pRecord,

int iCount, int iUpdate);
void _Export Insert(void *pParent, void *pRecord, int iCount);
void _Export InsertUpdate(void *pParent, void *pRecord, int iCount);
void _Export Remove(void);
void _Export Remove(void*pvData, short iCount);
void _Export Redraw(void *pRecord);
void _Export Sort(void*);
void* _Export Search(void *pStart, char *szString,unsigned int iType);
void* _Export ParentRecord(void *hCurrent);
void* _Export FirstRecord(void);
void* _Export MemoryFirstRecord(void);
void* _Export MemoryNextRecord(void *hCurrent);
void *_Export NextRecord(void *hCurrent);
void *_Export PreviousRecord(void *hCurrent);
void* _Export FirstChild(void *hParent);
void* _Export LastChild(void *hParent);
void* _Export FirstSelected(void);
void* _Export NextSelected(void *hCurrent);
void _Export ExpandTree(void *pRecord);
void _Export CompressTree(void *pRecord);
void _Export SelectRecord(void *pRecord, short sBool);

II Structure used by icon and tree views to hold icon resources
typedef struct
{

char
int
HPOINTER

T_LOOKUP;

szType[2];
iResource;
hicon;

Listing 6·15 CONTAIN.HPP- Class definition for C_CONTAINER

The C_CONTAINER class implements three constructors. The first two are
used if the container is created dynamically at run time. The first of these provides
an iMode parameter with which you can provide additional creation parameters
for the window. These parameters are operating system dependent, so refer to the
PM API documentation to determine the valid parameters for a container window.

CUA CONTAINER CLASS 223

224

Valid container styles supported by Presentation Manager are summarized
in the following table.

CCS_AUTOPOSIDON In icon view, icons are automatically positioned
according to a grid.

CCS_MINIRECORDCORE Containers use a smaller record type that uses less
memory but is more limited in its capabilities.

CCS_REAOONLY Container records are set as read only.

ccs_ VERIFYPOINTERS Records are verified to valid items in the con
tainer's linked list before they are used.

CCS_SINGLESEL

CCS_MULTIPLESEL

CCS_EXTENDEDSEL

11-------------
11 C_CONTAINER \

Single record selection is supported.

Multiple record selection is permitted.

Extended multiple selection is supported.

11---
11
II Description:
II This constructor creates an instance of the C_CONTAINER class. This
II class will typically be abstract, so this constructor will generally
II not be called directly.
II
I I Parameters:
II pxcParentObj - Pointer to owner object window
11 i ID - Resource ID of the container window
II
II
II
II

iView
i Flags
iMode

- View of the container (see header file)
- Any additional setup flags
- Any additional container window parameters

C CONTAINER::C CONTAINER(C WINDOW *pxcParentObj, int iID, int iView,
- - int iFlags, int iMode) : C_WINDOW_CHILD(pxcParentObj, 0)

ClassName(WC_CONTAINER);
II Create the group list box
if(iView == D_VIEW_NONE)

Create(iID, iMode, "", 0, 0, 90, 30);
else

Create(i ID, WS_VISIBLE I iMode, "", 0, 0, 90, 30) ;
II Setup the group container
Setup(iView, iFlags);

PM CLASS LIBRARY I CHAPTER 6

The iView parameter determines which view is to be used when the con
tainer is displayed. Below is a code fragment from the CONTAIN.HPP file show
ing the valid view values.

11-----------------------------------
11 View definitions for a container \
11---
#define D_VIEW_NONE -1 II Invisible (no view)
#define D VIEW DETAIL TITLE 0 II Detail view with titles
#define D=VIEW=DETAIL- 1 II Detail view - no titles
#define D_VIEW_TREE 2 II Tree View
#define D_VIEW_ICON 3 II Icon View (Currently unsupported)

The second constructor is similar to the first, except that it defaults the con
tainer mode parameters to some predetermined values permitting extended item
selection and preventing the user from performing editing operations.

C CONTAINER::C CONTAINER(C WINDOW *pxcParentObj, int iID, int iView,
- - int i°Flags) : C_WINDOW_CHILD(pxcParentObj, 0)

ClassName(WC_CONTAINER);

II Create the group list box
if(iView == D VIEW NONE)

else

Create(iID, CCS_READONLYICCS_EXTENDSELI
CCS_VERIFYPOINTERSICCS_AUTOPOSITION, 1111

, 0, 0, 90, 30) ;

Create(iID, WS_VISIBLEICCS_READONLYICCS_EXTENDSELI
CCS_VERIFYPOINTERSICCS_AUTOPOSITION, 1111

, 0, 0, 90, 30) ;

II Setup the group container
Setup(iView, iFlags);

The final constructor is used if the container is created as part of a dialog
from a resource file. In this situation, the container window already exists, so all
the C_CONTAINER code needs to do is connect to it.

11--------------
11 C_CONTAINER \
11---
11
II Description:
II This constructor creates an instance of the C CONTAINER class which
II originates in a dialog box supplied by the resource file. This
II class will typically be abstract, so this constructor will generally
II not be called directly.

CUA CONTAINER CLASS 225

226

II
11 Parameters:
II pxcParentObj - Pointer to owner object dialog
11 i ID - Resource ID of the container window
II iView - View of the container (see header file)
11 i Flags - Any additional setup flags
11 iMode - Any additional container window parameters

II
C_CONTAINER::C_CONTAINER(C_DIALOG *pxcParentObj, int iID, int iView,

int iFlags) : C_WINDOW_CHILD(pxcParentObj, 0)

ClassName(WC_CONTAINER);

II The window was created by the dialog system, so all we need to
II do is atach the instance to it.
C_WINDOW::Create(ParentObject()->Window(),

WinWindowFromID(ParentObject()->Window(), iID));

II Setup the group container
Setup(iView, iFlags);

The C_CONTAINER class implements a destructor which ensures that all
container items are removed, freeing any dynamic memory associated with them.

11---------------
11 -C CONTAINER\
11---:---
11 Description:
II This destructor removes all items from the container before it is
II destroyed.
II
11 Parameters:
II none
II
C_CONTAINER::-C_CONTAINER(void)
{

II Remove all records in the container
Remove();

Each of the constructors place a call to the Setup() method. This method is
typically internal, so it will likely never be called directly by a program unless you
want to implement code to support multiple views. This code sets view for a con
tainer object. The iFlags parameter specifies any additional operating system
specific container window attributes. See the PM on-line API documentation for
details of these additional flags.

PM CLASS LIBRARY I CHAPTER 6

11--------
11 Setup \
11---
11 Description:
II This method sets up the container according to specified view.

II
11 Parameters:
11 i View - D_VIEW_DETAIL_TITLE, D_VIEW_DETAIL, D VIEW TREE
II iFlags - Any additional PM container flags

II
11 Returns:
II none
II
void C_CONTAINER::Setup(int iView, int iFlags)
{

CNRINFO CI;

II Setup the container format
CI.cb = sizeof(CNRINFO);

II Configure the correct container view
switch (i View)
{

case D VIEW DETAIL TITLE: - - -
CI.flWindowAttr =CV DETAIL I CA_TITLESEPARATOR I

CA_DETAILSVIEWTITLES I iFlags;
break;

case D VIEW DETAIL:
CI.flWindowAttr = CV DETAIL I iFlags;
break;

case D VIEW TREE:
CI.flWindowAttr =CV TREE CV ICON CA TREELINE I iFlags;
break;

II Set the icon size and spacing for any icons that get shown
CI.cyLineSpacing = O;
CI.slBitmapOrlcon.cx = WinQuerySysValue(HWND_DESKTOP, SV_CYMENU);
CI.slBitmapOrlcon.cy = CI.slBitmapOrlcon.cx;

II Perform the container setup
SendMsg(CM_SETCNRINFO, MPFROMP(&CI), MPFROMLONG(

CMA_FLWINDOWATTR I CMA_LINESPACINGICMA_SLBITMAPORICON));

A container is really just a large linked list with display capability. In order
to insert new items into this list, space must first be allocated dynamically. The
Allocate() method manages this task.

CUA CONTAINER CLASS 227

228

There are two basic techniques for loading a container; depending on the
specific situation, you may want to use either. For initial loading of a container,
performance is better if the number of items to be inserted is first determined, then
enough space allocated for all items. If you are inserting 3,000 records into a con
tainer, allocate space for 3,000 first rather than allocating space for each record as
you go. This also has implications for memory use-allocating large memory
blocks at the outset usually results in more efficient memory use.

For updates or additions to a container, you can allocate space for a single
record and insert it. However, if this is an operation regularly performed by your
program, then you may want to design a small memory manager that allocates
records in groups and assigns them as required.

11-----------
11 Allocate \
11---
11 Description:
II This method allocates dynamic space for the specified number of
II new container records.
II
/I Parameters:
II ilength
II iCtr
II
11 Returns:
II
II

none

- Size of the record structure for the container
- Number of records to allocate

void *C_CONTAINER::Allocate(ULONG ilength, USHORT iCtr)
{

ULONG cbData;

II Determine the additional data space required
cbData = ilength - sizeof(RECORDCORE);

II Allocate a record
return (void *)SendMsg(CM ALLOCRECORD,

- MPFROMLONG(cbData), MPFROMSHORT(iCtr));

C_CONTAINER implements three methods for inserting records into a con
tainer; since all three perform the same basic task, I will handle them as a unit.

These operations are performed after space has been allocated and really equate to
adding new items to the linked list. The distinction is the addition of an update
parameter to the calling sequence.

Records can be updated (and possibly redrawn) on a record by record basis
by setting the update parameter to a TRUE value. If you are inserting many
records, however, you will likely not want to do this because of the significant

PM CLASS LIBRARY I CHAPTER 6

CPU overhead incurred by redrawing each item individually. A better method is
to perform one large update after the container is completely loaded.

11---------
11 Insert \

11---11 Description:
II This method inserts a specified number of records into the
II container. If the pParent attribute points to an existing record,
II then the inserts will become children of the parent record. This is
II used primarily for Tree View. The update determines if the container
II should be repainted after the records have been inserted.
II
II Parameters:
II pParent
11 pRecord
11 iCount
II iUpdate
II
11 Returns:
II
II

none

- Optional parent record
- Pointer to array of records to be inserted
- Number of records to be inserted
- Set if repaint is required after insert

void C_CONTAINER::Insert(void *pParent, void *pRecord, int iCount, int iUpdate)
{

RECORD INSERT RI;

II Create Insert information
RI.cb = sizeof(RECORDINSERT);
RI.pRecordOrder = (RECORDCORE *)CMA END;
RI.pRecordParent = (RECORDCORE *}pParent;
RI.zOrder = (ULONG)CMA_TOP;
RI.cRecordsinsert = iCount;
RI.finvalidateRecord = iUpdate;

II Insert the record
SendMsg(CM_INSERTRECORD, MPFROMP(pRecord }, MPFROMP(&RI));

Each of the update methods also accepts a count, and I should note that this
means you can (and probably should) insert records in groups. Inserting 100 single
records is much more time-consuming than creating the same 100 records and
inserting them as a group.

11---------
11 Insert \

11---11 Description:
II This method inserts a specified number of records into the

CUA CONTAINER CLASS 229

230

II
II
II
II

container. If the pParent attribute points to an existing record.
then the insertswill become children of the parent record. This is
used primarily for Tree View.

11 Parameters:
II pParent
11 pRecord
11 ;count

- Optional parent record
- Pointer to array of records to be inserted
- Number of records to be inserted

II
II Returns:

none II
II
void C CONTAINER::Insert(void *pParent, void *pRecord, int iCount)
{

Insert(pParent. pRecord, iCount, FALSE);

The pParent parameter in the Insert method is used only for tree view con
tainers; otherwise it should always have a NULL value. In tree view this parame
ter contains a pointer to a parent record, which, when displayed, will appear as a
secondary branch in the record tree associated with that specified parent.

11---------------
11 InsertUpdate \
11---11 Description: II This method inserts a specified number of records into the
II container. If the pParent attribute points to an existing reco'.d• II then the inserts will become children of the parent record. This
II is used primarily for Tree View.
II
11 Parameters:
II pParent
II pRecord
11 i Count

- Optional parent record
- Pointer to array of records to be inserted
- Number of records to be inserted

II
11 Returns:

none II
II void C_CONTAINER::InsertUpdate(void *pParent, void *pRecord, int iCount)
{

Insert(pParent, pRecord. iCount, TRUE);

For removing records from a container, C_CONTAINER provides two
methods. The first is a simple call to remove all records.

PM CLASS LIBRARY I CHAPTER 6

11---------
11 Remove\
11---11 Description:
II This method removes all records from the container and frees the
II memory associated with the items. If records within the container use II dynamic memory, this memory is nOT freed by this function.
II
11 Parameters:
II none
II
11 Returns:
II none
II
void C_CONTAINER::Remove(void)
{

II Remove all records from the container
SendMsg(CM_REMOVERECORD. 0, MPFROM2SHORT(0, CMA_FREE));

The second method accepts a pointer to an initial record and a number of
records to remove, starting from the initial item. Note that the C CONTAINER
class will not free up any dynamic space allocated by derived cl-;sses. It is the
responsibility of those individual classes to clean up any dynamic memory space
used by each container item's members.

11---------
11 Remove\
11---11 Description:
II This method removes a specified number of records from the container II and frees the memory associated with the items. If records within the II container use dynamic memory. this memory is not freed by this function 11 .
11 Parameters:
II pvData
11 iCount
II
11 Returns:
II
II

none

- Pointer to first container record to be removed
- Number of record to remove

void C_CONTAINER::Remove(void *pvData, short iCount)
{

PRECORDCORE *pRecordArray;

pRecordArray = (PRECORDCORE *)new PRECORDCORE[iCount];

CUA CONTAINER CLASS 231

232

pRecordArray[O] = (PRECORDCORE)pvData;
SendMsg(CM_REMOVERECORD, pRecordArray, MPFROM2SHORT(iCount, CMA_FREE));

delete pRecordArray;

When container records change, they may need to be redrawn.
c_CONTAINER implements a Redraw() method to manage this operation. It can
accept a pointer to an individual record to redraw, or a NULL value to redraw the
entire container.

11---------
11 Redraw\
11---11 Description:
II This method forces all records in the container to be refreshed,
II forcing the entire container to redraw.
II
11 Parameters:
II pvData - Pointer to first container record to be redrawn
II
II Returns:
11 none
II
void C_CONTAINER::Redraw(void *pRecord
{

PRECORDCORE *pRecordArray;

II Redraw records in the container
if(pRecord)
{

}
else

pRecordArray = (PRECORDCORE *)new PRECORDCORE[l];
pRecordArray[O] = (PRECORDCORE)pRecord;

SendMsg(CM INVALIDATERECORD, pRecordArray,
- MPFROM2SHORT(1, CMA_TEXTCHANGED));

delete pRecordArray;

SendMsg(CM_INVALIDATERECORD, 0, MPFROM2SHORT(0, CMA_ERASE));

Container records can also be sorted, either at insertion time or as part of a
re-sort operation. For the latter operation, C_CONTAINER offers a Sort() method
that accepts a pointer to a sorting function.

PM CLASS LIBRARY I CHAPTER 6

11-------
11 Sort \
11---11 Description:
II This method forces all records in the container to be sorted
II
II
II

according to the sort "C" function specified. The sort function
must be defined with "C" linkage to prevent compiler errors.

11 Parameters:
II SortFunc
II
11 Returns:
II
II

none

- Pointer to the sorting function

void C_CONTAINER::Sort(void *SortFunc
{

II Remove all records from the container
SendMsg(CM_SORTRECORD, SortFunc, 0);

A sort function has a particular format, but is really a pretty simple function
to create. In the code fragment below shows a short method to sort records by their
date fields.

SHORT APIENTRY SortMsgByDate(T MSGRECORD *rl, T_MSGRECORD *r2, PVOID pvStorage) { -
return (SHORT}strcmp(r2->sz0ate, rl->szDate);

The first two parameters are pointers to record structures used by the con
tainer. You will hear more about these later. Basically the sort function above com
pares the date fields for the two supplied records and returns a value less than
':zero, greater than zero, or equal to zero. This return value is used by the sorting
mechanism to determine if a swap should occur.

C_CONTAINER also makes provision for string searches in container
records. You can specify the starting record for a search, the string for which you
are searching, and the view that will be searched. The search method implemented
here is limited to full word, case-insensitive searches; however, adding another
method or modifying the one supplied will provide these extensions.

11---------
11 Search\
11---11 Description:
II This method accepts a starting record and string and searches for II the specified string in the container view determined by the iType
II parameter.

CUA CONTAINER CLASS 233

234

II
II
II

iType is one of CV_DETAIL, CV_ICON, or CV_TREE views.

11 Parameters:
- Search starting record (O for first record) II pStart
- Pointer to search string II szString
- Container view to search II Hype

II
11 Returns:

none II
II
void *C CONTAINER::Search(void *pStart, char *szString, unsigned int iType)
{

SEARCHSTRINGxtSearch;

II Set up general search parameters
xtSearch.cb = sizeof(SEARCHSTRING);
xtSearch.pszSearch = (PSZ)szString;
xtSearch.usView = iType;
xtSearch.fsPrefix = (ULONG)FALSE;
xtSearch.fsCaseSensitive = (ULONG)FALSE;

II Convert NULL start points to a real container start (CMA_FIRST)
if(pStart == NULL)

pStart = (void *)CMA_FIRST;

II Search the container for the selected record
return SendMsg(CM_SEARCHSTRING, MPFROMP(&xtSearch), MPFROMP(pStart));

If you are using tree view, there may be times when you need to determine
if there is a parent record associated with the record you are working with. Using
C_CONTAINER derived classes, you can place a call to the ParentRecord()
method, which will either return a pointer to the parent record or a NULL if there
is no parent.

11---------------
11 ParentRecord \
11---
11 Description: II This method will return a pointer to the parent record of the container
II record specified. If no parent exists, a NULL value is returned. The
II function would only be applicable to tree views of containers.

II
I I Parameters:
II hCurrent - Pointer to child record
II

PM CLASS LIBRARY I CHAPTER 6

//Returns:
// none
II
void *C_CONTAINER::ParentRecord(void *hCurrent)
{

//Return the first record
return SendMsg(CM_QUERYRECORD, hCurrent,

MPFROM2SHORT(CMA_PARENT, CMA_ITEMORDER));

There are a number of methods used to traverse records within a container
The simplest are the FirstRecord(), NextRecord(), and PreviousRecord() methods ..

!!--------------
// FirstRecord \
11---11 Description:
// This method will return a pointer to the first record in the container.
JJ If the container is empty, this method will return a NULL pointer.

/ / Parameters:
// none
II
/I Returns:
// none
II
void *C_CONTAINER::FirstRecord(void)
{

//Return the first record
return SendMsg(CM_QUERYRECORD, O,MPFROM2SHORT(CMA_FIRST, CMA_ITEMORDER));

~irstRecord() simply returns a pointer to the first record in the container
~espectin? the sorting technique currently in place. Note that the first record
inserted ~to the ~ontainer is not necessarily the first record returned by this
method, smce sorting may shuffle items around.

. NextRecor~() steps to the next record after the one supplied as a parameter.
Agam, sort order is respected by this method. If the end of the list is reached the
returned value will be NULL. '

!!-------------
!/ NextRecord \
11------------------------------------// Description: ---------------------------------------

// This method will return a pointer to the next record from the
II specified current record. If the current record is the last record
// a NULL value is returned. '
II

CUA CONTAINER CLASS 235

236

11 Parameters: 11 hCurrent - Pointer to current record
II
11 Returns:
II none
II
void *C CONTAINER::NextRecord(void *hCurrent)
{

II Return the next record
return SendMsg(CM QUERYRECORD, hCurrent,

- MPFROM2SHORT(CMA_NEXT, CMA_ITEMORDER));

PreviousRecord() can be used to step back one record from the record spec
ified. If the beginning of the list is reached, the returned value is NULL.

11-----------------
11 PreviousRecord \
11---
11 Description: II This method will return a pointer to the previous record from the II specified current record. If the current record is the first record,
II a NULL value is returned.
II
11 Parameters:
I I hCurrent - Pointer to current record
II
11 Returns:
II none
II
void *C_CONTAINER::PreviousRecord(void *hCurrent)
{

II Return the next record
return SendMsg(CM QUERYRECORD, hCurrent,

- MPFROM2SHORT(CMA_PREV, CMA_ITEMORDER));

To use these methods effectively to hit every record in the container, use the
following code fragment as a template. Traversing records can become a time
consuming task, so use this code in a separate thread to avoid hogging the system
message queue.

II Get the first record
pRecord = (T_RECORD *)FirstRecord();

II Loop until we reach the end of the list
while(pRecord)
{

PM CLASS LIBRARY I CHAPTER 6

II Do some processing for the record

II Go to the next record
pRecord = (T_RECORD *)NextRecord(pRecord);

Since the FirstRecord(), NextRecord(), and PreviousRecord() methods
respect the current sort order of a container, there is a significant overhead associ
ated with using them. There is a faster but more limited way to perform the same
task with C_CONTAINER. The FirstMemoryRecord() and NextMemoryRecord()
me~ods op.erate in exactly the same manner, except that they operate directly on
the linked list of records, thus avoiding a great deal of required processing. The
disadvantage to these methods is that they have no respect for the sort order of
containers, which may be a problem in applications where order is an issue. How
ever, if you are writing code to change an attribute of every record, the memory
methods perform better.

11--------------------
11 MemoryFirstRecord \
11---11 Description:
II This method will return a pointer to the first record in the container. II If the container is empty, this method will return a NULL pointer.
II
II Parameters:
II none
II
11 Returns:
II none
II
void *C_CONTAINER::MemoryFirstRecord(void
{

II Return the first record
return SendMsg(CM_QUERYRECORD, 0, MPFROM2SHORT(CMA_FIRST, CMA_ZORDER));

}

11------------------
11 MemoryNextRecord \
11---11 Description:
II This method will return a pointer to the next record from the
II specified current record by using the memory pointer rather than
II performing an actual query to the container.
II NOTE: This method is only useful for performing fast deletes because II the order is not guaranteed to be correct.
II If the current record is the last record, a NULL value is returned II .
11 Parameters:

CUA CONTAINER CLASS 237

238

11 hCurrent - Pointer to current record

II
11 Returns:
II none
II
void *C_CONTAINER::MemoryNextRecord(void *hCurrent)
{

RECORDCORE *pRecord;

pRecord = (RECORDCORE *)hCurrent;

II Return the next record
return (void *)pRecord->preccNextRecord;

The tree view container complicates things. Each new branch in a tree view
essentially represents a new linked list. Consequently, the FindFirst()IFindNext()

loop shown previously will not work. Instead, C_CONTAINER provides some
additional methods to scan the children of a parent record. FirstChild() and Last

Child() return the first and last child records for a specified parent container record

respectively.

11-------------
11 FirstChild \
11---
11 Description:
II This method will return a pointer to the first child record of the
II specified parent record. If no child exists, this method returns
II a NULL pointer.
II
11 Parameters:
I I hParent - Pointer to parent record
II
11 Returns:
II none
II
void *C_CONTAINER::FirstChild(void *hParent)
{

void *pRecord;

II Return the first record
pRecord = SendMsg(CM QUERYRECORD, hParent,

- MPFROM2SHORT(CMA FIRSTCHILD, CMA ZORDER));
if((LONG)pRecord == -1) - -

return O;
return pRecord;

PM CLASS LIBRARY I CHAPTER 6

11-----------
11 LastChild \

11---11 Description:
II This method will return a pointer to the last child record of the
II specified parent record. If no child exists, this method return
II a NULL pointer.
II
I I Parameters:
II hParent - Pointer to parent record
II
II Returns:
II none
II
void *C_CONTAINER::LastChild(void *hParent)
{

II Return the next record
return SendMsg(CM_QUERYRECORD, hParent,

MPFROM2SHORT(CMA_LASTCHILD, CMA_ZORDER));

!he p:esence of child records also complicates things if we want to modify

~attribute in ev~ry record in _a li~t. Previously, I showed a code fragment for a
single-level container; now, I will give you an example that accesses every record
including children, in a bi-level tree. '

II Get the first record
pRecord = (T_RECORD *)FirstRecord();

II Loop until we reach the end of the list
while(pRecord)
{

II Do some processing on the parent record

II See if there are any children
pChild = (T_RECORD *)FirstChild(pRecord);
while(pChild)
{

II Do some stuff to the child record

II Go to the next child record
pChild = (T_RECORD *)NextRecord(pChild);

II Go to the next parent record
pRecord = (T_RECORD *)NextRecord(pRecord);

CUA CONTAINER CLASS 239

240

The code required becomes far more complex for a container with several

levels of children. In such cases you may need to adopt a recursion algorithm to

access every record. Always be aware of the performance of container access, how

ever, or your application will suffer from the effects of CPU loading.
Stepping through every record in a container is not practical if you want to

access only those record(s) currently selected by the user. To accomplish this,

C_CONTAINER provides the FirstSelected() and NextSelected() methods, which

work similarly to the First/Next methods shown previously, but access only those

records selected.

11----------------
11 FirstSelected \

11---
11 Description:
II This method will return a pointer to the first record that is selected

II within the container. If no record is selected, this method will
II return a NULL pointer.

II
11 Parameters:
II none
II
11 Returns:
II none
II
void *C_CONTAINER::FirstSelected(void)
{

II Get the currently selected record
return SendMsg(CM QUERYRECORDEMPHASIS, (void *)CMA FIRST,

- (void *)MPFROMSHORT(CRA_SELECTED));

These methods can be placed in a loop arrangement (similar to the one pre

viously shown) to access every record selected by the user. There are a couple of

points to note about these methods, however. First, the container must have the

multiple selection or extended selection attribute set, otherwise the NextSelected()

method will be of limited use.

11---------------
11 NextSelected \

11---
11 Description:
II This method will return a pointer to the next record that is selected
II within the container. If no record is selected, this method will
II return a NULL pointer. This is useful only if the container is a

II detailed view with multiselection enabled.

II
11 Parameters:
II none

PM CLASS LIBRARY I CHAPTER 6

II
II Returns:
II none
II
void *C_CONTAINER::NextSelected(void *hCurrent
{

LONG l Value;

II Get the currently selected record
lValue = (LONG)SendMsg(CM_QUERYRECORDEMPHASIS,

if(lValue == -1)
lValue = O;

return (void *)lValue;

hCurrent, MPFROMSHORT(CRA_SELECTED));

Second, the view must be set correctly. Tree view containers do not support

multiple selection; again, the NextSelected() method is useless in this view.

The tree view container has some special characteristics. For instance, if you

create a record that has children, you will notice that to the immediate left of the

record in the display a "+" will appear, indicating the presence of child records. If

you click the"+" icon, the tree will be expanded and the icon will change to a"-";
clicking the "-" bitmap will again collapse the tree.

Most of this functionality is handled automatically by the PM container

code for the user interaction, but there may be times when you want to expand or

collapse tree branches in code. C_CONTAINER implements two methods to man

age this. The first of these is ExpandTree(), which accepts a parent record to
expand.

11-------------
11 ExpandTree \

11---11 Description:
II This method will expand the children of the specified parent record
II in tree fashion. This is useful only in tree view containers.
II
11 Parameters:
II pRecord - Pointer to current record
II
11 Returns:
II none
II
void C_CONTAINER::ExpandTree(void *pRecord
{

II Get the currently selected record
SendMsg(CM_EXPANDTREE, pRecord, 0);

CUA CONTAINER CLASS 241

242

The CompressTree() method collapses the specified record. Note that in
both methods passing a parameter of NULL will expand or collapse all trees in the
container.

//---------------
// CompressTree \
//---
//Description:
// This method will compress the children of the specified parent record
// in tree fashion. This is useful only in tree view containers.
II
/ / Parameters:
// pRecord - Pointer to current record
II
// Returns:
// none
II
void C_CONTAINER::CompressTree(void *pRecord)
{

//Get the currently selected record
SendMsg(CM_COLLAPSETREE, pRecord, 0);

The last method provided in C_CONTAINER is the SelectRecord() routine.
This method permits you to select or deselect items in a container as if the user had
selected them with a mouse. SelectRecord() requires a pointer to a record and a
TRUE/FALSE flag to indicate whether the record is being selected or deselected.

//---------------
// SelectRecord \
//---
//Description:
// This method will select or deselect the specified record as
// determined by the Boolean state flag passed from the caller.
II
//Parameters:
// pRecord
// sBool

- Pointer to current record
- Select or Deselect the record (TRUE or FALSE)

II
//Returns:

none II
II
void C CONTAINER::SelectRecord(void *pRecord, short sBool)
{

//Get the currently selected record
SendMsg(CM SETRECORDEMPHASIS, pRecord,

- MPFROM2SHORT(sBool, CRA_SELECTED));

PM CLASS LIBRARY I CHAPTER 6

. At ti:ie beginning of this section, I mentioned the column support in a detail
view container. So far, however, I have not shown any code to implement this. The
PM CLASS library does not implement anything like a column class; rather, it relies
on the use of PM API code to create the columns in a container.
. Cre~ting ti:ie .column c?de for a container is not difficult, and to show you
JUSt how simple it is I have included the following code fragment. This code is
actually cut from the news application in Part ill of this book; it derives the
C_CONTAINER_MSG from the C_CONTAINER class presented here.

The first task for the Columns() method is to remove any previous columns
from the container and allocate new ones--four of them in this case. It then creates
a column entry for each item, including a number of parameters, as well as the col
umns la~el, which can be optionally displayed at the top of the container output,
and a pointer to the record structure attribute displayed in the container.

Although I elected not to create any C++ class to define columns, this can
easily be added to the library if you are a real C++ zealot; I saw little need to create
another class for such a simple process. However, if you are planning to write code
that cre~tes or destroys fields dynamically during program execution, you may
want to invest some time to create a class in order to simplify the task further.

void C_CONTAINER_MSG::Columns(void)
{

PFIELDINFO
PFIELDINFO
FIELD INFO INSERT

pfi;
pfiFirst;
fi i;

//Remove any previous container column data
pfi = (PFIELDINFO)SendMsg(CM_QUERYDETAILFIELDINFO,

0, MPFROMSHORT(CMA_FIRST));
if(pfi)

SendMsg(CM_REMOVEDETAILFIELDINFO,
MPFROMP(pfi), MPFROM2SHORT(0, CMA_FREE));

//Allocate memory for the container column data
pfi = (PFIELDINFO)SendMsg(CM_ALLOCDETAILFIELDINFO,

MPFROMLONG(4), NULL);
pfi First = pfi;

//Set up information about each container column
pfi->flData = CFA_STRING ! CFA_HORZSEPARATOR ! CFA LEFT CFA_SEPARATOR;
pfi->flTitle = CFA_LEFT; -
pfi->pTitleData = "Number";
pfi->offStruct = (ULONG)&(((T_MSGRECORD *)0)->szNumber);

pfi = pfi->pNextFieldlnfo;
pfi->flData = CFA_STRING ! CFA_HORZSEPARATOR CFA LEFT CFA_SEPARATOR;
pfi->flTitle = CFA LEFT·
pfi->pTitleData = "Lines..;

CUA CONTAINER CLASS 243

244

pfi->offStruct = (ULONG}&(((T_MSGRECORD *)0)->szlines);

pfi = pfi->pNextFieldlnfo;
pfi->flData = CFA_STRING I CFA_HORZSEPARATOR I CFA LEFT CFA_SEPARATOR;
pfi->flTitle = CFA_LEFT;
pfi->pTitleData = "Subject";
pfi->offStruct = (ULONG}&(((T_MSGRECORO *)0)->szSubject);

pfi = pfi->pNextFieldlnfo;
pfi->flData = CFA_STRING I CFA_LEFT I CFA_HORZSEPARATOR;
pfi->flTitle = CFA_LEFT;
pfi->pTitleData = "Author";
pfi->offStruct = (ULONG}&(((T_MSGRECORO *)0)->szAuthor);

II Fill in infonnation about the column data we are about to give the
II container.
(void) memset(&fii, 0, sizeof(FIELDINFOINSERT));
fii.cb = sizeof(FIELDINFOINSERT);
fii.pFieldlnfoOrder = (PFIELDINFO)CMA_FIRST;
fii.cFieldlnfolnsert = (SHORT}4;
fii.flnvalidateFieldlnfo =TRUE;

II Give the container the column information . ..
SendMsg(CM INSERTDETAILFIELDINFO, MPFROMP(pfiF1rst }, &f11);

The result of this code is a container window, as shown in Figure 6-17.

•O
9• ·- -- -

lfdt
• ---- .11 ... ~
,..,...,.. I u. •• S~e~

"111"11 -.,.
nnihGlpF,ldl.calon1d1udu

211 41 A« c.nYooi e.1 Tl!n?
1QmllauRl""' 212 68 A« c.nYooi e.1 Thi.?,ei<aprmonotcam ~11111 m 13 Ai. c.nYooi e.1 Thil?,,(illn:t(monlord•d•

214 9 R<o;WmpAoOelB• w:ioq~plldl•,,.,
216 21 A« c.nYooi e.1 111;,1 ""'*-Slellhomon ""'10.C
216 11 A« c.nYooi e.1 Thil?

Ooni<4Tmoollo~ m 22 F'S: l.emlodctor 0&'2111.D p,~dlf•in..,ca !I
210 21 Ro-FS:~oll::S ~Prim I cdliieedonlUlll IPld Mmtil 219 48 611890& lOIHIRN.Oeol.«lob OSl2· a b<iodorilllbto.oir.oelpulf..,
2!0 17 R<o;WmpAoOelB• (amHOIJIM1111 Bo.ftlotNlll
2t1 2'8 Ro. c.nYooi e.1 Thil?

(l;wun!Jibm"°" 2rz 17 A« CenYooi e.1 111;,1 a1alocb!Gl11111.av (G~ Cb m 15 4 GJGIB'l're SCSI on...«19.'!no oomoollilrl11l<1•m 224 27 A« c.nYooi e.1 111 .. 1 ni:hmialonlll
21li 28 A« Ploooo """""'""rd aSCSl I ti> R>dclbJilo~.P..bell 226 19 A« CenYool Bol...., Th"? J:Eoni•od"' dnldo "*""'1 Os.'ZJ oi~~i<com(O) m 22 I r.EED DETJ\ILSI LOCATIONS! ETC.I CNu A« Eaa......a DROPS 05m l...atiicomGliuJi1com 228 e F'S: OS.OZ w.ipfiuYmd..,..-CORlM ll•l111tJiliollnol(Ja"1 J l.e!11 2211 16 OSf.! CSll +>far Rio (Wi<eol!W<J<ks & Da1>1)

~od!Mi!?ida.og'!'!.cebli:h~~
~~ ~! Ro< htuWald ertr:t;< OS!! ""IWl<s bmrthon NT orWi<l!5

, . .,.

Figure 6·17 Sample container column output

PM CLASS LIBRARY I CHAPTER 6

To find out more detail about using the C_CONTAINER object to derive
new container views, reference the news and FTP applications in Part ID of this
book. The use of containers will be described in more detail there.

Debug I Data Logging Class

One of the biggest headaches associated with coding is the debugging process.
You need to compile and re-compile until you get a clean run. Often the debuggers
most compiler vendors supply are just no use in solving a software problem. This
is particularly true if you are involved in any sort of realtime (or near realtime)
programming. With this type of application you cannot simply stop in mid-pro
cess to examine the state of things. Also, if the bug is related to timing, running the
code inside a debugger may actually give correct results.

Debugging can be further complicated in the field once you deliver a prod
uct. Inevitably, one of the users of your software will report a bug that you simply
cannot reproduce in the sterile conditions of a test lab. This is usually because
users follow a different sequence of steps than you in attempting to reproduce the
error, or perhaps in explaining the crash procedure to you the user inadvertently
omits one or more crucial steps.

There is thus a need for a different kind of debugging. You need to be able
to build debugging capability into an application so that, when a bug appears, you
can examine the series of events that led to the problem in pseudo realtime.
PMCLASS offers a solution to this problem in the form of a C_LOG class that
writes pretty much anything you need into a programmer specified log file. By
placing calls to C_LOG methods you can write time-stamped printf()-style strings
into your log. Later you can analyze the log file for problems.

The C_LOG class offers two modes of operation. The first mode causes the
log code simply to write the log information into the specified log file. The second,
more advanced mode, makes use of the C_MLE class discussed previously to
write any additional log information into a debug window created when the log
file is open. This provides some realtime logging that is useful for trekking
through multithreaded applications.

The C_LOG class is illustrated as follows:

C_LOG

char szFileN ame[256] C_LOG()
FILE *hLogFile -C_LOG()
int iLogging void Open()
c_WINOOW _DEBUG *pxcDebug void Close()

void Write()

Figure 6-18 C_LOG class

DEBUG/DATA LOGGING CLASS 245

246

C_LOG contains a pointer to the C_ WINDOW _DEBUG class, which is also

defined in the PMCLASS library and is dedicated to the MLE portion of C_LOG.

This class should not be constructed outside PMCLASS, but I mention it here in

case you want to make some enhancements to this portion of the debugging code.

C_ WINDOW _DEBUG

C_MLE *pxcDebugMLE C_WINDOW _DEBUG()

-C_ WINDOW _DEBUG()

void *MsgCreate()

void *MsgAdd()

void *MsgSize()

Figure 6·19 Internal C_WINDOW_DEBUG class

Since the C_ WINDOW _DEBUG class is necessary for C_LOG, we will look

at the code for it first. You should have some understanding of its inner workings

before you attempt to determine how C_LOG uses this class.
The header file for C_LOG and C_ WINDOW _DEBUG is shown below:

11----------------------------------
11 C WINDOW DEBUG class definition\ 11--: ______ : __ _

class C_WINDOW_DEBUG : public C_WINDOW_STD
{

private:
C MLE *pxcDebugMLE;

public:
Export C WINDOW DEBUG(void);

-Export -C WINDOW DEBUG(void);
void* Export MsgCreate(void *mpl, void *mp2);
void *-Export MsgAdd(void *mpl, void *mp2);
void* =Export MsgSize(void *mpl, void *mp2);

};

11------------------------
11 C_LOG class definition\

11---
class C LOG
{

private:
char
FILE
int
C WINDOW DEBUG - -

szFileName[256];
*hLogFile;
iLogging;
*pxcDebug;

II Name of log file
II Log file handle
II Logging mode (TRUE or FALSE)
II Debug window class

PM CLASS LIBRARY I CHAPTER 6

public:
Export C_LOG(char *szLogFile, int iLogMode);

_Export -C_LOG(void);
void _Export Open(void);
void _Export Close(void);
void _Export Write(char*, ...);

};

11-----------------------------------
11 C_WINDOW_DEBUG message definition \

11---
#define DM_DEBUG_ADD PM USER

Listing 6·18 LOG.HPP- Class definition for C_LOG

At the beginning of this chapterm I described the use of message tables and

how they interrelate with PMCLASS to process window messages. Since it has a

complete application window that is sizable, a system, menu, and an instance of

C_MLE object to display information to the user, C_ WINDOW _DEBUG could

almost stand alone as a program. As such, C_ WINDOW _DEBUG needs to imple

ment a message table to tell PMCLASS how to react. The class really only cares

about four window messages, as shown below. The message methods for these
will be described in detail shortly.

DECLARE_MSG_TABLE(xtMsgDebug)
DECLARE_MSG(PM_CREATE,
DECLARE MSG(DM DEBUG ADD,
DECLARE=MSG(WM=SIZE,
DECLARE_MSG(WM_PAINT,

END MSG TABLE

C_WINDOW_DEBUG::MsgCreate)
C_WINDOW_DEBUG::MsgAdd)
C_WINDOW_DEBUG::MsgSize)
C_WINDOW_STD::MsgPaint)

Like all other C++ classes, C_WINDOW_DEBUG is constructed before it is

used. The constructor for this class is incredibly simple (see below). Its only

requirement is to call its parent constructor, C_ WINDOW _STD, to inform it about
the new message table.

11--------------
11 Constructor \

11---11
II Description:
II This constructor creates an instance of the MLE window.
II
11 Parameters:
II none
II

DEBUG/DATA LOGGING CLASS 247

248

II Returns:
II void
II
C_WINDOW_DEBUG::C_WINDOW_DEBUG(void) C_WINDOW_STD(xtMsgDebug)
{
}

C_ WINOOW _DEBUG also needs to implement a destructor. This code

ensures that any dynamic memory gets returned to the heap before the object goes

out of scope. The creation process in C_ WINDOW _DEBUG, allocates an instance

of the C_MLE class dynamically; the destructor makes sure it is disposed of in the

correct manner.

11-------------
11 Destructor\
11---
11
I I Description:
II This destructor destroys the MLE window. It frees up the MLE object
II used by the window.
II
I I Parameters:
II none
II
11 Returns:
II void
II
C WINDOW DEBUG::-C WINDOW DEBUG(void) r - - -

delete pxcDebugMLE;

You already know from studying the message table that the MsgCreate()

method gets executed whenever the C_ WINDOW _DEBUG window object is cre

ated. As part of this creation process, it must create an instance of the MLE control

it will use for the debug text display. This method also sets the color and font used

for the display.

11------------
11 MsgCreate \

11---
11 Event: PM CREATE
II Cause: Issued by OS when window is created
II Description:This method gets called when the window is initially created.

II It initializes all the visual aspects of the class.
void *C_WINDOW_DEBUG::MsgCreate(void *mpl, void *mp2)
{

PM CLASS LIBRARY I CHAPTER 6

II Create the MLE
pxcDebugMLE = (C MLE *)new C MLE(this 99998);
pxcDebugMLE->Delete(o, 30); '

II Set the desired color and font
SetFont("8.Helv");
SetBackgroundColor(0, O, O);
SetForegroundColor(255, 255, 255);

return FALSE;

The MsgAdd() method is called any time some new text is being inserted

into the MLE. It simply retrieves a pointer to the text and calls the C_MLE::Insert()
method to write it into the editor buffer.

11---------
11 MsgAdd \

11---11 Event: DM DEBUG ADD
II Cause: Issued by Write() method when new text is to be written to MLE
II Description:This method is called when new text needs to be written to the

11. MLE control. The mpl parameter points to the text to insert.
void *C_WINDOW_DEBUG::MsgAdd(void *mpl, void *mp2)
{

pxcDebugMLE->Insert((char *)mpl);

return FALSE;

When the C_ WINDOW _DEBUG window receives a WM_SIZE message

from the system, it needs to respond properly to ensure that the MLE window uses

all the avail~bl~ client area, otherwise the MLE control will be too large or too

small~ resulting m a v~ry odd output. The MsgSize method queries the new size of
the client area and resizes the MLE control window accordingly.

11----------
11 MsgSize \

11---11 Event: WM SIZE
II Cause: Issued by OS when window is resized
II Description:This method is called any time PM decides the window needs

II to be resized. It determines the new window dimensions and
11. resizes the visual components accordingly.
void *C_WINDOW_DEBUG::MsgSize(void *mpl, void *mp2)
{

int iCX;
int i CY;

DEBUG/DATA LOGGING CLASS 249

250

// Determine the size of the client area
GetSize(&iCX, &iCY);

// Draw the MLE Window
pxcDebugMLE->SetSizePosition(0, 0, iCX, iCY);

return FALSE;

That's all there is to the C_WINDOW _DEBUG class. Now let's start looking
at how C_LOG uses this class, and how debug output is written to a log file.

The basic design criteria for C_LOG are that it must operate passively, with
out affecting any other operation of a program, and that it must be easy to use. To
meet this goal, C_LOG presents only a single constructor that accepts a log file
name and the mode of operation. The mode can have values 0 through 2, deter
mining the level of debugging to use. A zero value indicates no logging. A value
of 1 indicates that C_LOG will write debug data to the log file only, and a value of
2 tells the object to write data to both the log file and to the MLE window as well.
If the constructor receives a mode of 2, it registers and creates an instance of the
C_ WINDOW _DEBUG class. The debug window receives a sizable border and sys
tem menu, as well as a title and minimize/maximize buttons. For convenience, the
window is also placed in the Workplace Shell task list also.

//--------------
//Constructor\
//---
//
// Description:
// This constructor creates an instance of the C_LOG class. If the
// iLogMode is set to 2, then the MLE display window is also created.

II
// Parameters:
// szLogFile - Pointer to debug log filename

- Log mode (O=no log, l=file, 2=file and MLE) // iLogMode
II
C_LOG::C_LOG(char *szLogFile, int iLogMode)
{

strcpy(szFileName, szLogFile);
iLogging = iLogMode;
pxcDebug = NULL;

// If an MLE output is required, create an instance
if(iLogging == 2)
{

//Create an instance of a debugging window
pxcDebug = (C_WINDOW_DEBUG *)new C_WINDOW_DEBUG;
pxcDebug->Register("DebugConsole");

PM CLASS LIBRARY I CHAPTER 6

//Set the window characteristics
pxcDebug->WCF_SizingBorder();
pxcDebug->WCF_SysMenu();
pxcDebug->WCF_TaskList();
pxcDebug->WCF_ShellPosition();
pxcDebug->WCF_MinButton();
pxcDebug->WCF_MaxButton();
pxcDebug->WCF_TitleBar();

C_LOG also provides a destructor method. This code frees up the dynamic
data area used to create the instance of C_ WINDOW _DEBUG in the constructor.

//--------------
//Destructor\
//---
//
// Description:
// This destructor destroys the MLE display window if it was created
// during the construction process.
II
C_LOG::-C_LOG(void)
{

if(pxcDebug)
delete pxcDebug;

The newly created C_LOG instance cannot yet be written to; it first needs to
be opened. The Open() method first deletes any previous log file, then opens a new
file handle used to write the debug data. If the MLE window is being used, then
the C_ WINDOW _DEBUG object is created and displayed as well.

//--------
// Open() \
/!---
//
//Description:
// This method opens the debug log. It first creates a new log file then,
// if required, displays the MLE window.
II
/ / Parameters:
// none
II
// Returns:
// void
II
void C_LOG::Open(void)

DEBUG/DATA LOGGING CLASS 251

252

II Remove any log file left from a previous run
DosForceDelete((PSZ)szFileName);

if (i Logging)
{

hLogFile = fopen(szFileName, "w");
if(iLogging == 2)
{

pxcDebug->Create(99999, "PMCLASS Debugging Window");
pxcDebug->Show();

Write("Log Open") ;

When debug logging is finished, the log file (and possibly the
C_WINDOW_DEBUG instance) needs to be closed, otherwise there is a risk of
leaving open file handles floating around the system. The C_LOG::Close() method
closes the file handle used for debug logging and, if necessary, hides the MLE win
dow.

11----------
11 Close() \
11---
11
II Description:
II This method closes the debug log. If the MLE window is currently
II visible it will be hidden.
II
11 Parameters:
II none
II
II Returns:
II void
II
void C_LOG::Close(void)
{

if (i Logging)
{

Write("Log Closed");
fclose(hLogFile);
if(iLogging == 2)

pxcDebug->Hide();

PM CLASS LIBRARY I CHAPTER 6

The final method in C_LOG is the most important. Write() accepts a vari
able number of arguments since it features a printf() style input; after formatting
the output string, it is written to the log file and optionally to the MLE window.

Write() further aids the debugging process by prefixing a time stamp to
each line it writes. This time stamp has the format MM:SS:HH, where MM is the
time in minutes, SS is the number of seconds, and HH is the number of hundredths
of seconds.

If the MLE window is enabled, Write() sends a DM_DEBUG_ADD message
to the C_ WINDOW _DEBUG object accompanied by a pointer to the output string.
This causes the information to be written to the MLE buffer, followed by a carriage
return.

C_LOG::Write() has a restriction of which you should be aware. Notice that
the szString variable, which is used to hold the formatted output string, is a static
buffer of 4K. This prevents you from displaying anything larger than this without
risking a memory protection violation. Write() makes no attempt to verify that the
output buffer will not exceed a size of 4 Kbytes.

11----------
11 Write() \
11---
11
11 Description:
II This method accepts a printf-style string and will format and write
II the string to the log file and optionally to the MLE window. A
II time stamp will be prefixed to all strings written.
II
11 Parameters:
II szFormat - A printf-style variable argument list
II
11 Returns:
II void
II
void C_LOG::Write(char *szFormat, . . .)
{

DATETIME
va list
char
char

dt;
xtArgs;
szString[4096];
szTemp[80];

if(iLogging)
{

va_start(xtArgs, szFormat);
vsprintf(szString, szFormat, xtArgs);
va_end(xtArgs);

DosGetDateTime(&dt);

DEBUG/DATA LOGGING CLASS 253

254

fprintf(hlogFile, "%02d:%02d:%02d->", cit.minutes, cit.seconds,
dt.hundredths);

fprintf(hlogFile, "%s\n", szString) ;
fflush(hlogFile);

if(iLogging == 2)
{

sprintf(szTemp, "%02d:%02d:%02d->", dt.minutes,
cit.seconds, dt.hundredths);

pxcDebug->SendMsg(DM_DEBUG_ADD, szTemp, 0);
strcat(szString, 11 \n");
pxcDebug->SendMsg(DM_DEBUG_ADD, szString, 0);

Chapter Summary

In this chapter, we have developed all the visual classes in the PMCLASS cla~s
library. PMCLASS will be used extensively in applications later in the book. It is
hoped that you now understand the concepts and source code of these classes.

PMCLASS can be considered a hybrid class library for OS/2. It operates at a
higher, more object-oriented level than the standard OS/2 API, but it by no means
represents a complete wrap of the API, like the IBM ICLUI classes or Borland
Object Windows Library. It does, however, lend itself to easy exp~nsion to further
isolate developers from the basic API, and also features a very simple route back
to the API if you find that you need a function from the basic PM libra~. Although
not constructed with portability in mind, PMCLASS should be relatively .easy to
port should you need to create applications spanning ~everal pla~forms. Wm~ows
NT or Windows'95 should be relatively easy ports, smce the Wmdows API is so
similar to OS/2's. Other platforms, like UNIX X Motif, will likely be more difficult
because (although some would disagree) these APis are relatively primitive by
comparison with OS/2's.

PMCLASS is best viewed as a foundation to build on. I would fully expect
you to add new classes to suit your own needs. For example, PMCLASS currently
offers no GDI graphing interface other than that accessible from the ~t~dard PM
APL For many developers, graphics capability is very important; bmldmg expan
sion classes into PMCLASS for this should not be difficult.

PM CLASS LIBRARY I CHAPTER 6

In this chapter . . .

./ Eliminating TCP/IP socket interfaces

./ TCP/IP network protocols with NETCLASS

./ Enhanced network throughput with multithreading

Developing a Network Interface Class Library

What is N ETCLASS?

In this chapter we will finally start to discuss the classes associated with TCP/IP
networking, and we will study several different protocols. All the classes devel
oped in this chapter will be placed in a separate class library DLL called NET
CLASS.DLL. In the third part of this book we will use the classes in NETCLASS to
create working applications.

The object hierarchy for the NETCLASS library can be shown as follows:

C CONNECT

C_CONNECT_PING C_CONNECT_NEWS C_CONNECT_FTP

Figure 7-1 NETCLASS class hierarchy

255

256

In an earlier chapter I mentioned RFCs (Requests For Comment), which are
documents describing changes or additions to the way the Internet communicates.
When required, all class code described in this chapter will reference the appropri

ate RFCs.
The goal in developing a network class library is to isolate the programmer

from the perils of normal TCP/IP programming. The TCP/IP API contains many
confusing data structures and function calls; for the most part you will use very
few of them. The most logical step in developing a C++ class library for TCP/IP,
therefore, is to eliminate as much of the complexity as possible by implementing
classes that encapsulate the important aspects of TCP/IP, while hiding the rest.

One of the most confusing aspects of TCP/IP programming is the use of net
work sockets. In the NETCLASS library, the socket code is wrapped in the base
class and hidden from the derived children. This makes the design and implemen
tation of the derived classes much less complicated. Once the base network class is
in place, adding derived classes to support different network protocols should be
a relatively simple exercise.

The NETCLASS library developed in this chapter implements classes to
support Ping, NNTP News, and FTP protocols, but more protocol classes can be
added as required to support such applications as IRC, Gopher, or Mail.

The C_CONNECT Class

The C_CONNECT class is the basis for all network classes in the class library. In
contains all the code needed to wrap the TCP/IP API and hide most of its internals
from the programmer. This class creates a complete set of methods needed to
implement all the child networking classes used in this book, and you should also
be able to use this base class to derive classes for other protocols.

If you decide to create additional applications, you will need to derive a
new child class, and may need to expand the capabilities of the C_CONNECT
class. Generally, it is best to push as much logic as possible into the base class
because you may need the same code in several applications. News and FTP use
virtually identical connection sequences, for instance, and it would be counterpro
ductive to implement this functionality in several places in the code.

The following figure illustrates the C_CONNECT class:

C_CONNECT

char szServer[256] C_CONNECT()

int iPort void Initialize()

int iSocket int FindHost()

int iBusy int Protocol()

char szNetBuffer[D _NET_BUFFER+ 1] int StreamSocket()

char *szNetBufferPtr int RawSocket()

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

C_CONNECT (Continued)

struct sockaddr_in xtSocket int Open()
struct protoent *pxtProtocol void Close()

int Send()
int Send To()
int ReceiveFrom()
int ReceiveBuffer()

void Receive()
void LoadFile()
char* Server()
int Port()
int Socket()
void Busy()
int Busy()

Figure 7-2 C_CONNECT class

The header file for C_ CONNECT is shown in Listing 7-1:

//----------------------------------
// IBM TCP/IP header files required \

1/---
#ifndef NET INCL
#define NET INCL
extern "C"

#include <types.h>
#include <sys\socket.h>
#include <netinet\in.h>
#include <netinet\in systm.h>
#include <netinet\ip~h>
#include <netinet\ip icmp.h>
#include <netdb.h> -

#end if

//----------------------------
//Network error return codes \

1/---
#define D_NET_OK 0 // Net operation successful
#defi ne D NET HOST -1 // Error resolving host
#define D_NET_SOCKET -2 //Error while creating socket
#define D_NET_CONNECT -3 // Error while connecting
#define D_NET_RECV -4 // Error while receiving
#define D NET BUSY -5 // Error: Connection Busy

THE C_CONNECT CLASS 257

258

#define D_NET_PROTOCOL -6 II Error in protocol

#define D NET BUFFER 4096 II Size of network read buffer

11---------------------------------
11 C_CONNECT base class definition\
11---
class C CONNECT
{

protected:
char
int
int
int
char
char

szServer[256];
i Port;
iSocket;
iBusy;
szNetBuffer[D_NET_BUFFER+l];
*szNetBufferPtr;

II Domain Name or IP
II Port number used
II Socket for connection
II Set if instance is busy
II Buffer for network data
II Current pointer to buffer

struct sockaddr in
struct protoent

xtSocket;
*pxtProtocol;

II Socket structure used
II Protocol used

public:
_Export C_CONNECT(char *szConnectServer, int iPort);

#ifdef BORLANDC

#else

#endif

_Export C_CONNECT(void) {};

C_CONNECT(void) {};

void
int
int
int
int
int
void
int
int
int

int
void
void

_Export
_Export
_Export
_Export
_Export
_Export
_Export
_Export
_Export
_Export

_Export
_Export
_Export

Initialize(char *szConnectServer, int iConnectPort);
FindHost(void);
Protocol(char *szProtocol);
StreamSocket(void);
RawSocket(void);
Open(void);
Close(void);
Send(char *szCorrrnand);
SendTo(char *pbyBuff, short slength);
ReceiveFrom(char *pbyBuffer, short slength,

struct sockaddr_in *pxsFrom);
ReceiveBuffer(char *szBuffer, int iSize);
Receive(char *szBuffer);
LoadFile(char *szFilename);

II Inline methods
#ifdef BORLANDC~

char *
int
int
void

_Export
_Export
_Export
_Export

Server(void
Port(void)
Socket(void)
Busy(int iValue)

return szServer; };
return iPort; };
return iSocket; };
iBusy = iValue; };

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

#else

#endif
};

int

char *
int
int
void
int

_Export Busy(void)

Server(void)
Port (void)
Socket(void)
Busy(int iValue)
Busy(void)

return iBusy; };

return szServer; };
return iPort; };
return iSocket; };
iBusy = iValue; };
return iBusy; };

Listing 7-1 NET.HPP- Class definition for C_CONNECT

C_CONNECT implements a single constructor that initializes the socket
connection. Since this class will likely never be constructed-it is a base class after
all-it will be called only as part of the creation process for the child classes.

The C_CONNECT constructor accepts a pointer to a server string. This
string can contain either an IP address or a domain name string because the code
that determines the host address can detect which address format it has been
passed and process it accordingly. The constructor also requires a port number.
Most protocols require a port in order to make a connection. Ping is a notable
exception that uses a different technique (ICMP) for establishing a TCP/IP connec
tion operating at a much lower level.

11-------------
11 Constructor\
11---
11
11 Parameters:
II szConnectServer - Address of server to connect to
II iConnectPort - Port number used for this connection
II
11 Returns:
11 none
II
C_CONNECT::C_CONNECT(char *szConnectServer, int iConnectPort
{

II Transfer parameter data into class attributes
Initialize(szConnectServer, iConnectPort);

As you can see from the constructor code, all it does is invoke the Initialize()
method. Initialize() initializes the required class attributes, but it also calls the
sock_init() API from the TCP/IP library. As previously described, this call is neces
sary to start a TCP/IP program correctly. Since every type of TCP/IP protocol
requires this call, we have placed it in the lowest class level.

THE C_CONNECT CLASS 259

260

/!------------
//Initialize\
/!---
//Description:
// This method is called to initialize the required class attributes.
II
// Parameters:
// szConnectServer - Pointer to domain name or IP string of server
II
II

iConnectPort - TCP/IP port to be used for this connection

//Returns:
II
II

none

void C_CONNECT::Initialize(char *szConnectServer,
{

//Transfer parameter data into class attributes
strcpy(szServer, szConnectServer);
iPort = iConnectPort;

// Initialize the network read buffers
strcpy(szNetBuffer, 1111

) ;

memset(szNetBuffer, 0, D_NET_BUFFER + 1);
szNetBufferPtr = szNetBuffer;

// Initialize the socket for communications
pxtProtocol = NULL;

//Initialize the TCP/IP socket interface
sock_init();

//Default the socket number
iSocket = O;

int iConnectPort)

As part of the process of connecting to a TCP/IP system, the program needs
to be able to create a host structure for the TCP/IP connection to use. The code
implemented in FindHost() does this by initializing the socket structures. Find
Host() then places a call to inet_addr() from the TCP/IP API library. This tests to
see if the address passed into the constructor was an IP address or a domain name
string. If the call to inet_addr() fails, FindHost() assumes that the address was a
domain name string. Assuming that a valid host address string was passed when
the CONNECT object was instantiated, FindHost() populates the socket structure.

//---------
// FindHost \
//---
//Description:
// This method attempts to build the host portion of the socket

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

II
//

structure. The server address attribute must previously be set.

// Parameters:
II
II

none

//Returns:
II D_NET_HOST - Host definition error
II D_NET_SOCKET - Could not get a socket
II D_NET_CONNECT - Error during connection
II D_NET_OK - Connection established successfully
II
int C_CONNECT::FindHost(void
{

struct hostent *pxtHost;

// Initialize the socket structure
bzero(&xtSocket, sizeof(struct sockaddr));
xtSocket.sin_addr.s_addr = O;
xtSocket.sin_family = AF_INET;

//Try to resolve the INET address
xtSocket.sin addr.s addr = inet addr(szServer);
if((LONG)xtSocket.sin_addr.s_addr == -1)
{

//Try to resolve the server by name
pxtHost = gethostbyname(szServer);
if(pxtHost == NULL)
{

//Couldn't resolve the server
return D_NET_HOST;

//Copy the host data into the socket structure
bcopy(pxtHost->h_addr, &xtSocket.sin_addr, pxtHost->h_length);

//Host was initialized correctly
return D_NET_OK;

I mentioned earlier the requirement for a port, which applies to virtually
every type of TCP/IP communication. However, there are a number of methods by
which a port number can be attained. The simplest is, of course, to supply a hard
coded port number, but this procedure is not reliable for protocols where ports are
dynamically allocated, so we have to supply an alternative approach.

If you look at the PROTOCOL file in your TCP/IP installation (typically in
the \ETC subdirectory), you will find a list of network protocols equated to port
numbers. If we can reference a protocol string rather than a hard-coded number

THE C_CONNECT CLASS 261

262

we can make the program essentially independent of port numbers. If the user
decides to use your program on a different port, all he would be required to do is
edit the PROTOCOL file. To accomplish this using the C_CONNECT class, you
would call the Protocol() method, supplying it with a string indicating the protocol
you wish to use. For example, "ICMP" or "FTP."

Protocol() is a simple wrapper for the TCP/IP API call, getprotobyname().
As shown below, it makes the API call and returns the appropriate error code. As
you will see later in this chapter, the C_CONNECT_PING class uses a call to Pro
tocol() to select the "ICMP" protocol.

11----------
11 Protocol \
11---
11 Description:
II This method permits the caller to specify a protocol for the
II connection. (i.e. "icmp")
II
11 Parameters:
II szProtocol - Protocol definition string
II
11 Returns:
II D_NET_PROTOCOL - Error setting protocol
II D_NET_OK - Connection established successfully
II
int C_CONNECT::Protocol (char *szProtocol
{

II Try to set the selected protocol
pxtProtocol = getprotobyname(szProtocol);
if(!pxtProtocol)
{

II Could find the specified protocol
return D_NET_PROTOCOL;

II Protocol was set correctly
return D_NET_OK;

Depending on the network protocol used by an application, it may have to
transmit and receive data using different methods. TCP/IP supports several tech
niques, including streaming sockets, datagram sockets, and a raw sockets. With
streaming sockets, data transmission uses the TCP protocol and is connection
oriented and reliable. There are protocols in place to ensure that data is transmitted
without errors or duplication and received in the correct order. The news and FTP
applications presented in later chapters use streaming sockets.

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

Datagram sockets are used for connectionless TCP/IP services in the UDP
layer. Each datagram is sent as a separate packet, and there are no protocols in
place to guarantee the reliability or integrity of the data transfer. Network File Sys
tem (NFS) is an example of a protocol that makes use of datagram sockets. I have
not implemented a datagram application in this book.

Raw sockets permit access to low-level protocols such as IP or ICMP. This
socket type is typically used for testing the integrity of the network link or lower
level protocols.

TCP/IP does support extending the socket interface. This means you can
define new types of socket interfaces to provide enhanced or application specific
capabilities.

The C_CONNECT class provides two member functions for setting the
socket interface: StreamSocket() and RawSocket(). The code for these follows:

11--------------
11 StreamSocket \
11---
11 Description:
II This method set the socket interface to stream.
II
11 Parameters:
II
II

none

11 Returns:
II D NET SOCKET
II (NE(OK
II

- Error selecting stream mode
- Connection established successfully

int C_CONNECT::StreamSocket(void)
{

II Create a socket for this streamed connection
iSocket =socket(AF_INET, SOCK_STREAM, 0);
if(iSocket == -1)
{

iSocket = O;
return D_NET_SOCKET;

return D_NET_OK;

11-----------
11 RawSocket \
11---
11 Description:
II This method sets the socket interface to raw, which is typically
II used for low-level data transfers such as Ping.
II

THE C_CONNECT CLASS 263

264

// Parameters:
// none
II
// Returns:
II D_NET_SOCKET - Error selecting raw socket interface
II D_NET_OK - Connection established successfully

II
int C_CONNECT::RawSocket(void)
{

// Make sure a protocol has been defined
if(!pxtProtocol)

D_NET_PROTOCOL;

// Create a socket for this raw connection
iSocket = socket(AF_INET, SOCK_RAW, pxtProtocol->p_proto);
if(i Socket == -1)
{

// Failed to set raw socket
iSocket = O;
return D_NET_SOCKET;

return D_NET_OK;

Notice that RawSocket() makes a call to the TCP/IP socket() API, which ref

erences the pxtProtocol->p_proto data element used to determine the protocol.
This assumes that a call to Protocol() has been made prior to entering this method
in order set up the desired information block.

With most of the helper methods now implemented, an actual connection

can be established. C_CONNECT::Open() implements a default connection to a
TCP/IP socket and port. Note that not every protocol will be able to use this

Open() method because it makes some assumptions about the type of connect
(stream mode, for instance); however, many protocols will be able to utilize the

C_CONNECT::Open() or expand on it. It has been implemented here to save some
additional coding later.

When invoked, Open() first calls the FindHost() method to set up the host

portion of the TCP/IP socket data area. Then it sets up the socket for streaming

data mode, which is used by News (NNTP), among many other protocols. Assum

ing no errors have occurred, Open() then calls the TCP/IP API, connect(), to estab

lish the network connection. At this point, if no connection errors have occurred, a
connection is established and data transmission can proceed.

11------
11 Open\
11---
11 Description:

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

II
II
II

This method performs .basic open functions common to many of the TCP/IP
protocols. It determines the host data and creates streaming data socket.

// Parameters:
II
II

none

// Returns:
II D_NET_SOCKET
II D NET OK
II - -
i nt C_CONNECT::Open(void)
{

int i Result;

- Error selecting stream mode
- Connection established successfully

//Get the host data for this connection
iResult = FindHost();
if(iResult != D NET OK)
{ - -

II Return any host errors
return iResult;

// Select streaming socket
iResult = StreamSocket();
if(iResult != D NET OK)
{ - -

II Return any socket setting errors
return iResult;

/I Connect to the correct port
xtSocket . sin_port = htons(iPort);

II Connect the socket
if(connect(iSocket, (sockaddr *}&xtSocket, sizeof(xtSocket)) < o)
{

//Return any connection errors
iSocket = O;
return D_NET_CONNECT;

/I Connected OK
return D_NET_OK ;

After all data transfer is completed, the connection should be closed. The
Close() method implements this by making API calls to shut down the data socket
and close it. This returns any dynamically allocated network buffers to the

THE C_CONNECT CLASS 265

266

resource pool for other applications to use. Neglecting to call Close() at the end of

a communication leaves the TCP/IP socket allocated; if this is done often enough,

TCP/IP will eventually cease to function due to lack of resources. Always call

Close() when you are finished with a connection.

!/------
//Close\
//---
/!Description:
// This method closes the socket associated with th~ current

// connection. This method should be called to terminate a

// socket connection properly.

II
/ / Parameters:
// none
//
//Returns:
// none
II
void C_CONNECT::Close(void)
{

// Shut down the connection
shutdown(iSocket, 2);

// Close the socket
soclose(iSocket);

With the connection and disconnection code out of the way, we can discuss

the actual procedures for transmitting and receiving data: C-:CONNECT supports

methods for both types of high-level TCP/IP commurucation-User Datagram

Protocol (UDP) and Transmission Control Protocol (T~P). .

For TCP communications, C_CONNECT provides two basic methods, the

first being Send(). Send() is a simple wrapper used to isolate derived ~lasses and

applications from the TCP/IP APL It accepts a single parameter, a pointer to the

NULL-terminated string to be transferred. You must follow the rules of the proto

col you are using when calling Send(). For example, if the protocol req~~ that

transmitted data be suffixed by an "\r\n" sequence, then it is the responsibility of

the caller to ensure that this done.

!!-----
//Send \
!!---

//Description: .

// This method sends the supplied string to the TCP/IP connection.

II

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

//Parameters:

// szCommand - The conmand string to be issued

II
//Returns:
// The number of characters sent.
II
int C_CONNECT::Send(char *szCommand)
{

return send(iSocket, szCommand, (short)strlen(szCommand), O);

The second TCP method for data transfer is ReceiveBuffer(), which accepts

a pointer to a data buffer followed by its size in bytes. ReceiveBuffer() will read

from the network input buffer until the output buffer, szBuffer, is full or the net

work input buffer is empty. If the input buffer is empty when ReceiveBuffer() is

called, the method will wait for data to arrive. For this reason, it is very important

that network transfer operations generally occur from within separate threads of

an application rather than in the main PM thread; otherwise, the program may tie

up the system message queue while waiting for data to arrive.

!!---------------
// ReceiveBuffer \

/!---//Description:

// This method receives a specified maximum number of characters from

// TCP/IP connection and stores them in the buffer pointed to by szBuffer.

II
I I Parameters:
// szBuffer
II
II

iSize

/I Returns:

- Target buffer for the received characters

- Maximum number of characters that the buffer can hold

// The number of characters received.
II
int C CONNECT::ReceiveBuffer(char *szBuffer, int iSize)
{ -

int iResult;

iResult = recv(iSocket, szBuffer, iSize, O);

return iResult;

Data reception for stream sockets can be rather more complicated than sim

ply placing a call to ReceiveBuffer(). The problem arises because the Receive

Buffer() grabs whatever data is sitting in the input buffer regardless of line

termination. The buffer may actually contain many lines of streamed data. This

THE C_CONNECT CLASS 267

268

makes reading data somewhat complicated-it would be ideal if there were a

method that the programmer could call to extract a complete carriage-return

delimited line from the network buffer. In this way the requirements imposed on

the programmer could be drastically reduced.
The Receive() method meets these requirements. Actually, Receive() offers a

fringe benefit-speed. When I started writing TCP/IP applications I fell into the

same trap as most developers, including IBM. This was the logical assumption that

the fastest way to find a line of text in the network input buffer was to read a byte

at a time until I found a carriage return. Dumb move!

Receive() is the result of rewriting my input code several times; now it

finally seems to be right. The C_CONNECT class maintains a large secondary

buffer from which Receive() extracts data. When Receive() is invoked, it checks the

network buffer and reads as much of it as possible in the secondary buffer. Then it

examines the secondary buffer, determines where the next line termination occurs,

and extracts the data to that point. The line termination is stripped and the line of

text is returned to the code that called Receive().
This double buffering of input data may at first seem awkward, but makes

extraction of streamed information much easier; it also improves performance

considerably. Compare the time it takes to read an article with IBM's NR/2 versus

NeoLogic News, and you will see the difference.

11---------
11 Receive \
11---
11 Description:
II This method will receive one carriage-return-delimited line from the

II TCP/IP network buffer. Upon detection, the carriage control is

II removed and the buffer is NULL terminated.

II
/I Parameters:
II szBuffer - Pointer to target area for the received line.

II
I/ Returns:
// none
II
void C_CONNECT::Receive(char *szBuffer)
{

char szString[1025];
int i Result;

II If there are no more CR-LFs in the buffer, we must have more data

II to load
i Result = O;
memset(szBuffer, 0, 1024);

if(szNetBufferPtr == O)

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

memset(szNetBuffer, 0, D NET BUFFER+ 1);
szNetBufferPtr = szNetBuffer;-

II If there are no more complete lines, read one in from the network
if(!strstr(szNetBuffer, "\r"))
{

II Loop until we have at least one complete line
do {

II Get the next chunk of data from the server
iResult = ReceiveBuffer(szNetBuffer + strlen(szNetBuffer),

D_NET_BUFFER - strlen(szNetBuffer));
while(i Result > 0 && (! strstr(szNetBuffer, "\r")

11 !strstr(szNetBuffer, "\n")));

· if(strstr(szNetBuffer, "\r") 11 strstr(szNetBuffer, "\n"))
{

II Copy the line out of the network buffer
strncpy(szString, szNetBuffer, 1024);

II Eliminate the line termination
if(strstr(szString, "\r"))

*strstr(szString, "\r") = O;
if(strstr(szString, "\n"))

*strstr(szString, "\n") = O;

II Chop the line out of the buffer and shove everything over

memmove(szNetBuffer, szNetBuffer + strlen(szString),
D_NET_BUFFER - strlen(szString) + 3);

II Get rid of the line termination
if(*szNetBuffer == '\r')

memmove(szNetBuffer, szNetBuffer + 1, D_NET_BUFFER);
if(*szNetBuffer == '\n')

memmove(szNetBuffer, szNetBuffer + 1, D_NET_BUFFER);

memset(szNetBuffer + strlen(szNetBuffer), o,
D_NET_BUFFER - strlen(szNetBuffer));

strcpy(szBuffer, szString);

For UDP communications there are also two methods implemented in

C_CONNECT. SendTo() sends a raw datagram packet to the defined socket.

SendTo() is a simple wrapper for the TCP/IP API call sendto().

THE C_CONNECT CLASS 269

270

//--------

// SendTo \ --//---------------------------------
// Description:
// This method wraps the standard TCP/IP sendto() API.

II
// Parameters:
// pbyBuffer
// sLength

- Pointer to buffer to be sent
- Length of the buffer

II
// Returns:
II The number of characters sent

II
int c_CONNECT::SendTo(char *pbyBuffer, short sLength
{

return sendto(iSocket, pbyBuffer, sLength, 0,
(struct sockaddr *}&xtSocket, sizeof(struct sockaddr_in) };

The complementary function to SendTo() is ReceiveFro~(), which accepts
UDP packets from the specified socket. Like SendTo(), Rece1veFrom() wraps a
standard TCP/IP API call, recvfrom().

//-------------
/! ReceiveFrom \ ----------------//---
//Description:
// This method wraps the standard TCP/IP recvfrom() API.

II
//Parameters:
// pbyBuffer
// sLength
II
II

pxsFrom

_ Pointer to buffer where received data will be written
- Size of the buffer
- Socket from which data will be received

//Returns:
// The number of bytes received or -1 for an error

II
int c_CONNECT::ReceiveFrom(char *pbyBuffer, short sLength,

struct sockaddr_in *pxsFrom)

int iSize;

iSize = sizeof(struct sockaddr_in);
return recvfrom(iSocket, pbyBuffer, (short)sLength, 0,

(struct sockaddr *)pxsFrom, &iSize };

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

Many of the streaming protocols implemented with TCP/IP can transfer
ASCII files. Typically, these files are transferred a line at a time and terminated by
an "\r\n. \r\n" character sequence. This technique is used to transfer articles and
overviews in the news protocol, read documents in Gopher, and even receive mes
sages in the POP or SMTP mail protocols. Since transferring ASCII files is such a
common exercise, C_CONNECT implements the LoadFile() method to accomplish
this it. LoadFile() accepts a filename string; data is written to the specified file until
the "\r\n. \r\n" character sequence is received.

/!---------
// Load File \
/!---
//Description:
// This method will read until a \r\n.\r\n character sequence is
// detected in the data in the specified text file. Many descendant
// cl asses will need to perform this opera ti on for command processing,
//· so the functionality has been added to the base class. This method will
// receive one carriage-return-delimited line from the TCP/IP network
// buffer. Upon detection, the carriage control is removed and the buffer
// is NULL terminated. If the specified file exists, it will be overwritten.
II
// Last Revision Date:
II 94-0ct-01
II
// Parameters:
// szFilename - Pointer to filename where data will be written
II
void C_CONNECT::LoadFile(char *szFilename)
{

char *szBuffer;
FILE *hFile;
int iFlag;

//Create the specified file
hFile = fopen(szFilename, "w");
iFlag = O;
szBuffer = (char *}malloc(2048 };

// Loop until an end of data sequence has been detected
while(!iFlag)
{

//Get a line from the network
Receive(szBuffer };

// If the line is an end of buffer marker, flag it for termination
if(strcmp(szBuffer, ".") == 0)
{

THE C_CONNECT CLASS 271

272

else
{

}

iFlag = 1;

II Write the line to the output file
fprintf(hFile, "%s\n", szBuffer);

fclose(hFile);

free(szBuffer);

Ping Class

The Ping protocol is used in many cases to test the condition of a connection. To

accomplish this, Ping uses the ICMP protocol specified in RFC 792 to transmit data
packets with checksums to a specified address. The other end of the connection
bounces the data back to the originator, where the data is verified for checksum

errors and data loss. Ping also evaluates the round-trip time of the message to test
the condition of the network.

C_CONNECT_PING

int TransmitCount C_CONNECT_pING()

int ReceiveCount int Open()

USHORT I dent int PingRx()

DATETIME xtStartTime; int PingTx()
void ResultString{)
char* PacketType()
US HORT In Checksum()

Figure 7·3 C_CONNECT_PING class

The header file for C_CONNECT_PING is shown in Listing 7-2:

class C_CONNECT_PING public C_CONNECT
{

private:
int iTransmitCount;
USHORT iident;
DATETIME xtStartTime;

public:

II Packet number tx'ed
II Unique identifier for this Ping process
II Start time of the Ping transmit

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

_Export C_CONNECT_PING(USHORT iidentity, char *szConnectServer);
int _Export Open(void);
int _Export PingRx(BYTE *pbyPacket, char *szString);
int Export PingTx(BYTE *byPacket, int ilength);
void _Export ResultString(char *szString,

};

char *buf, int cc, struct sockaddr_in *from);
USHORT _Export InChecksum(USHORT *pbyAddr, int ilen);

Listing 7·2 NETPING.HPP- Class definition for C_CONNECT_PING

The C_CONNECT_PING class developed in this section provides a basic
network interface for the Ping application presented in Part III. This class is

derived from the C_CONNECT class presented previously; consequently, the con
structor for this class calls the parent constructor, then initializes the attributes spe
cific to the Ping class.

11----------------
11 C_CONNECT_PING \

11---11 Description:
II This constructor creates an instance of the C CONNECT PING class.
II - -
11 Parameters:
II ildentity
II szConnectServer
II
11 Returns:
II none
II
II Author(s):
II Steven Gutz
II
II Last Revision Date:
II 94-0ct-01
II

- Identifying integer for this application
- Pointer to domain name or IP string of server

C_CONNECT_PING::C_CONNECT_PING(USHORT iidentity, char *szConnectServer)
: C_CONNECT(szConnectServer, O)

iTransmitCount = O;
ildent = iidentity;

Ping uses the ICMP protocol operating directly on top of the IP level. For
this reason the generic Open() method specified in C_CONNECT will not work.

Ping needs to provide a more specific interface to open a connection to another

PING CLASS 273

274

host. Like the previously defined Open(), C_CONNECT_PING's Open() method

first sets up the host attribute of the class. Open() then specifies the "ICMP" proto

col that is used by Ping to transmit data, and also sets the raw transfer mode by

calling RawSocket(). Notice that, unlike the parent class's Open(), the Open()

method in C_CONNECT_PING does not call the connect() API from the TCP/IP

library. This is because it works at a very low level requiring only a socket number

and an IP address to start transferring data.

11------
11 Open \
11---
11 Description:
II This method creates and opens a Ping connection to the IP specified

II when this instance was constructed. If acquires the host information

II and sets the protocol to ICMP, then creates a raw data connection.

II
11 Parameters:
II void
II
11 Returns:
II int - Result of the connection attempt

II
int C_CONNECT_PING::Open(void)
{

int iResult;

II Fill in the host information
iResult = FindHost();
if(iResult != D_NET_OK)

return iResult;

II Set up the correct protocol
iResult =Protocol("icmp");
if(iResult != D_NET_OK)

return iResult;

II Connect to a raw data socket
iResult = RawSocket();
return i Result;

In order to transmit data, C_CONNECT_PING provides a PingTx() method

which performs a number of operations to send a data packet. First, it creates and

initializes an ICMP structure, setting the transmission packet count, and calculates

the packet checksum. The packet that this method transfers is referenced by the

pbyBuffer parameter passed into the method. In order to determine the round-trip

time, Ping needs to know when a packet is transmitted, so PingTx() saves the cur

rent time, then calls SendTo() to send the packet immediately.

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

11--------
11 PingTX \

11---11 Description:
II This method sends a Ping packet to the host. It also updates the

II packet transmission count used to track received packets and records

JJ the starting time for the round-trip calculation.

11 Parameters:
II pbyPacket
II ilength
II
II Returns:
II
II

int

- Pointer to a data area containing the data packet
- Size of the packet to be transmitted

- D_NET_OK if transmission was OK

int C_CONNECT_PING::PingTx(BYTE *pbyPacket, int ilength)
{

int
struct icmp

i Result;
*pxsICmp;

II Populate the ICMP structure for transmission
pxslCmp = (struct icmp *)pbyPacket;
pxsICmp->icmp_type = ICMP ECHO;
pxsICmp->icmp_code = O; -
pxslCmp->icmp_cksum = O;
pxsICmp->icmp_id = (UCHAR)ildent;
pxsICmp->icmp_seq = (UCHAR)iTransmitCount++;

II Compute the packet checksum
pxslCmp->icmp_cksum = InChecksum((USHORT *)pxs!Cmp, ilength);

II Get the start time for the ping TX
DosGetDateTime(&xtStartTime);

II Transmit the packet
iResult = D_NET_RECV;

if(SendTo((char *)pbyPacket, ilength) == ilength)
iResult = D NET OK;

return iResult;- -

The c?mplementary operation to PingTx() is the PingRx() method. This

method receives a packet from the instance's connection and determines the Ping

result string, which contains any errors that have occurred and specifies the

round-trip time for the packet.

PING CLASS 275

276

11--------
11 PingRX \
11---
11 Description:
II This method receives a Ping packet back from the host and fonnats

II the appropriate result string for any errors that may have occurred.

II
11 Parameters:
II pbyPacket - Pointer to a data area containing the data packet

II szString - Pointer area where the result string will be written

II
11 Returns:
11 int - Number of bytes received from the host.

II
int C_CONNECT_PING::PingRx(BYTE *pbyPacket, char *szString)

{
int
int
int

iCtr;
iResult;
sock_arr[5];

struct sockaddr in xsFrom;

iCtr = O;
strcpy(szString, "");

II Be willing to wait 5 seconds for a response

sock arr[O] = (short)Socket();
iResult =select((int *)sock_arr, 1, 0, 0, 5000L);

if(iResult > 0)
{

II Receive the packet from the host
iCtr = ReceiveFrom((char *)pbyPacket, D_NET_BUFFER, &xsFrom);

II If there were no errors, fonnat a Ping string to return to the caller

if(iCtr >= 0)
ResultString(szString, (char *)pbyPacket, iCtr, &xsFrom);

return iCtr;

ResultString() is a helper method called by PingRx(). This method performs

several error checks to verify that the packet is the correct length and belongs to

the Ping socket that transmitted the packet. Assuming the packet belongs to this

instance, the method acquires the system time and uses it to determine the round

trip time. Finally, it formats a result string that the PingRx() method returns to its

caller.

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

11--------------
11 ResultString \

11---11 Description: ------------

11 This method calculates the round-trip time and fonnats a st ·

II h. h · d. ring
II w ic in icates any errors that occurred during the Ping operation.

I I Parameters:
11 szStri ng
II pbyPacket
II ilength
II xsFrom
II
11 Returns:
II void
II

- Po~nter area where the result string will be written

- Pointer to a data area containing the data packet

- Size of the packet buffer
- Ping receive socket

void C_CONNECT_PING::ResultString(char *szString,

char *pbyPacket, int ilength, struct sockaddr in *xsFrom)
{ -

char
int
long
long
DATETIME
struct ip
struct i cmp
struct in_addr
static char

} ;

*szPacketType;
iHeaderLength;
lStart;
1 End;
xtEndTime;
*ip;
*icp;
in;
*ttab [] = {
"Echo Reply", "ICMP 1", "ICMP 2",

"Dest Unreachable", "Source Quence",

"Redirect", "ICMP 6", "ICMP 7", "Echo",

"ICMP 9", "ICMP 10", "Time Exceeded",

"Parameter Problem", "Timestamp",
"Timestamp Reply", "Info Request",
"Info Reply"

in.s_addr = xsFrom->sin addr.s addr;

xsFrom->sin_addr.s_addr-= ntohl(xsFrom->sin_addr.s_addr);

ip = (struct ip *)pbyPacket;
iHeaderLength = (ip->ip_hl << 2) + 4;

if(ilength < iHeaderLength + ICMP MINLEN)
{ -

II Fonnat the output string

sprintf(szString, "packet too short (%d bytes) from %s",

return;
ilength, inet_ntoa(in));

PING CLASS 277

278

}

}
ilength -= iHeaderLength;
icp = (struct icmp *)(pbyPacket + iHeaderlength);

II Make sure this packet belongs to us
if(icp->icmp_id == ildent)
{

icp->icmp_type &= OxOf;
if(icp->icmp_type != ICMP_ECHOREPLY)
{

II Determine the packet type
szPacketType = ttab[icp->icmp_type];
11 Format the output string

0
• -•

sprintf(szString, 11 %d bytes from Yos: 1cmp_type-Yod

return;

ilength, inet_ntoa(in), icp->icmp_type,
szPacketType);

(%s)u,

II Calculate the round-trip time
DosGetDateTime(&xtEndTime);
lStart = xtStartTime.hundredths + xtStartTime:seconds **100 +

xtStartTime.minutes * 6000 + xtStartT1me.hours
60 * 60000;

lEnd = xtEndTime.hundredths + xtEndTime.seconds * 100 +
xtEndTime.minutes * 6000 + xtEndTime.hours * 60

* 60000;
lEnd -= lStart;

11 Format the output string .
0

• -~ 11 sprintf(szString, 11 %d byte~ fro~ %s: _1cmp_seq=Yod, ti~e-.ldms,
ilength, inet_ntoa(1n), icp->1cmp_seq, lEnd),

else
strcpy(szString, 1111

);

The final method in C_CONNECT_PING is ano~er hel~er meth?d that
d t mines the checksum for packets that will be transrmtted with the PmgT~()
:e:od. The algorithm is a simple calculation using a 32-bit accumulator to which
sequential 16-bit words will be added.

News Class
Th NNTP protocol is used to communicate with news servers. The protocol ~s
fai:l comprehensive but does have several limitations. For exa~ple, NN'!I' is
un1Je the FTP protocol in that there is no way to abort an operation once it has

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

been initiated. This can be a real problem if you have mistakenly started to load a
5,000-line uuencoded binary. Also, NNTP does not support any form of data com
pression-all articles are transferred as single items containing uncompressed
ASCII characters.

Although NNTP is showing its age, it is probably the most popular protocol
on the Internet, with daily data transfers in the range of megabytes per day. It is a
protocol that is impossible to ignore, and is actually one of the more straightfor
ward applications one can build for TCP/IP.

Our support for NNTP has been developed in the C_CONNECT_NEWS
class that is part of NETCLASS. The class structure follows in Figure 7-4:

C _CONNECT_NEWS

C_NEWS_CONNECT()
int Open()
void Close()
int OpenPost()
int ClosePost()
int List()
int ListNewsGroups()
int ListNewGroups()
int Overview()
int Group()
int First()
int Next()
int Article()
int Body()
int Head()

Figure 7·4 C_CONNECT_NEWS class

The C_CONNECT_NEWS class implements the protocol specified in
RFC 977. This class will be used in the news application in Part III of this book.
Like other network classes in NETCLASS, C_CONNECT_NEWS is derived from
C_CONNECT and relies heavily on code from this parent class.

The header file for C_CONNECT_NEWS is shown in Listing 7-3:

II Standard TCP news port
#define D NEWS PORT 119

class C CONNECT NEWS public C_CONNECT
{

private:
int

NEWS CLASS

i Post Flag; II Set if posting is permitted

279

280

public: C CONNECT NEWS(char *szConnectServer, int iPort); Export _ -
#ifdef - BORLANDC_ .

_Export c_CONNECT_NEWS(void) {};
#else

C CONNECT NEWS(void) {}; - -
#endif

int
void
int
int
int
int
int
int
int

int
int
int
int
int

} ;

Export -Export -Export -Export -Export -Export
)xport

Export - Export -
Export -Export -Export -Export -Export -

Open(void);
Close(void);
OpenPost(void);
ClosePost(char *szResponse);
List(char *szFilename };
ListNewsGroups(char *szFilename);
ListNewGroups(char *szDate, char *szFile~ame .); .
Overview(ULONG lStart, ULONG lEnd, cha~ szFilename },
Group(char *szGroup, ULONG *plFirstArticle,

ULONG *plLastArticle, ULONG *plTotal);
First(ULONG lArticle);
Next(ULONG *lArticle }; . .
Article(ULONG lArticle, char *szFilename },
Body(ULONG lArticle, char *szFilename);
Head(ULONG lArticle, char *szFilename };

Listing 7·3 NETNEWS.HPP - Class definition for C_CONNECT_NEWS

C CONNECT NEWS implements a single constructor, which does not add
any additional functi~nality; it simply calls the parent consf truthctor. Thnneeccoti·~~~~Z~

dd d rt number to use or e co .
~~:~ ~s ;~:~1; us~:~:t 1l~, the port parameter has been provided to
allow support for nonstandard NNTP news servers.

//-------------
// Constructor\ -------------------------//--
//Description: . h c CONNECT NEWS class. // This constructor creates an instance oft e - -

II
//Parameters:
// szConnectServer
// iConnectPort

- Pointer to domain name or IP string of ~erver
- TCP/IP port to be used for this connection

II
//Returns:
// none

~/CONNECT NEWS::C CONNECT_NEWS(char *szConnectServer'. int iConnectPort)
- - - : C_CONNECT(szConnectServer, iConnectPort)

NE1WORK INTERFACE CLASS LIBRARY I CHAPTER 7

//Default constructor

Like any other TCP/IP connection type, before an NNTP port can be used,
the program using the connection must open it. The C_CONNECT_NEWS class
provides its own C_CONNECT::Open() method, which adds to the functionality
provided by the base class Open().

The first step this method takes is to place a call to C_CONNECT::Open(),
then it reads a response from the server. According to the NNTP RFC, the server
must respond with a connection string once the client makes a connection. This
string identifies the server, and can also note the services available to the client.
The server will respond to the connection with one of the following typical
response codes.

200 - Server ready-posting allowed
201 - Server ready-no posting allowed
400 - Service discontinued
500 - Command not recognized
501 - Command syntax error
502 - Access restriction or permission denied
503 - Program fault-command not performed

Open() returns the server response code to the caller.

//-------
// Open(} \
//---
//Description:
// This method opens the news socket for communications. It reuses the
// current C_NET::Open() code, then reads the server response string
// from the news server.
II
/ / Parameters:
// none
II
//Returns:
II none
II
int C CONNECT NEWS::Open(void)
{ - -

char szBuffer[1024];
int iResult;
int iError;

//Default to an error result
iError = D_NET_CONNECT;

NEWS CLASS 281

282

II Call the parent to open the socket
iResult = C CONNECT::Open();
if(iResult->= D_NET_OK)
{

II Read the response from the server
Receive(szBuffer);

II Get the error result code
iError = atoi(szBuffer);

II If there was an error, flag it
if(iError != 200 && iError != 201)
{

i Socket = O;
return D_NET_CONNECT;

II Connected OK
return iError;

Once the application is finished with the NNTP connection, .it sh~uld ~e
closed. C NEWS _CONNECT provides a Close() method to accomplish this. This
method s-;nds an NNTP "QUIT" command to the server, then calls the base class
C CONNECT::Close().

- Although the "QUIT" command returns a response, the C_C?NNEC~--
NEWS object disregards it because it is about to close anyway. The string remain
ing in the network buffer will be discarded when the buffer is freed up, so we do
not need to worry about memory leaks.

11---------
11 Close() \
11---
11 Description: II This method closes the news socket after communication is completed.
II It send a QUIT command to the server to inform it of the shutdown
II then calls the parent Close().
II
11 Parameters:
II none
II
11 Returns:
II none
II
void C_CONNECT_NEWS::Close(void)
{

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

Send ("QUIT\ r\n") ;

II Call the parent close to kill the socket
C_CONNECT::Close();

When a client news program wants to post a new article to Usenet it needs
to send some special commands to the server to prepare for the transfer. The
C_CONNECT_NEWS class provides two methods of managing this. The first of
these methods is OpenPost(). This method is actually quite simple-it issues a
server "POST" command and fetches the response code. The server will respond
with one of the following replies:

340 - Server is ready to receive the article to be posted
440 - Posting is prohibited for some installation-dependent reason.

Once a 340 response code has been received, the client can begin sending
each line of the article text using the C_CONNECT::Send() method.

11------------
11 OpenPost () \
11---11 Description:
II This method initiates a message posting. This is called any time
II a new article is being posted to Usenet.
II
11 Parameters:
11 none
II
11 Returns:
II none
II
int C_CONNECT_NEWS::OpenPost(void)
{

char szBuffer[1024];

II Send the group COlllTiand
sprintf(szBuffer, "post\r\n");
Send(szBuffer);
Receive(szBuffer);

II Process the response
return atoi(szBuffer);

When the article has been sent to the server, the client needs to terminate the
transmission. This can be done by calling the C_CONNECT_NEWS::ClosePost()
method. This method sends an "\r\n.\r\n" string to indicate the end of the

NEWS CLASS 283

284

transfer, then retrieves the server response code for the posting. Valid responses
are as follows:

240 - Article posted OK
340 - Send article to be posted. End with "\r\n. \r\n"
440 - Posting not allowed
441 - Posting failed

11-------------
1 I Cl osePost () \
11---
11 Description:
II This method is sent at the end of a posting operation.
II It sends the "." terminator character and waits for a posting
II response from the server.
II
11 Parameters:
II none
II
II Returns:
II none
II
int C_CONNECT_NEWS::ClosePost(char *szResponse)
{

char szBuffer[l024];

II Send the group command
sprintf(szBuffer, "\r\n.\r\n");
Send(szBuffer);
Receive(szBuffer);

memset(szResponse, 0, 256);
strncpy(szResponse, szBuffer, 255);

II Process the response
return atoi(szBuffer);

NNTP news servers provide a facility for clients to retrieve a list of all news
groups currently maintained by the server. The C_CONNECT_NEWS::List()
extracts this list from the server and writes it to the specified file name.

List() returns only a single result code:

215 List of newsgroups follows
The list of groups follows immediately, terminated by an "\r\n.\n\r"

sequence. List() calls the C_CONNECT::LoadFile() method to read this information.

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

11--------
11 List() \
11---11 Description:
II This method retrieves a list of available newsgroups from the server
II into the specified file. The file will be created or overwritten if
II it already exists.
II
I I Parameters:
II szFilename - File to which the list will be written
II
11 Returns:
II none
II
int C_CONNECT_NEWS::List(char *szFilename)
{

char szBuffer[l024];
int iResult;

II Request the article
sprintf(szBuffer, "list\r\n");
Send(szBuffer);
Receive(szBuffer);

II Get the response back from the server
iResult = atoi(szBuffer);

II If there was no error, load the response file
if(iResult < 400 && iResult > O)

LoadFile(szFilename);

return iResult;

Most NNTP servers also provide a facility for the client to query a descrip
tion list containing more detailed information about each group. Most news client
programs do not support this capability, but you can use this command to retrieve
a description list that can be displayed for the convenience of the user.

The ListNewsGroups() method uses the NNTP "LIST NEWSGROUPS"
command. This is similar to the "LIST" command, for it compels the server to send
the list terminated by a period. Again the C_CONNECT::LoadFile() method is
called to write this information to the specified file.

11-----------------
11 ListNewsGroups() \
11---11 Description:
II This method retrieves a list of descriptions for newsgroups from the

NEWS CLASS 285

286

II
II
II

server into the specified file. The file will be created or
overwritten if it already exists.

11 Parameters:
- File to which the list will be written // szFilename

II
11 Returns:

none II
II
int C_CONNECT_NEWS::ListNewsGroups(char *szFilename)

{
char szBuffer[1024];
int i Result;

// Request the article
sprintf(szBuffer, "list newsgroups\r\n");
Send(szBuffer);
Receive(szBuffer);

//Get the response back from the server
iResult = atoi(szBuffer);

II If there was no error, load the response file
if(iResult < 400 && iResult > 0)

LoadFile(szFilename);

return iResult;

Since the group list loaded from a typical server can be upwards of 5000
groups, it is not efficient to load this from the server every time the user wants to
see the list. It would be much more efficient to read only new groups added to the
server since the last check. Fortunately, the developers of the NNTP protocol pro
vided a "NEWSGROUPS" command that accepts a time stamp in the format:

NEWGROUPS date time [GMT] [<distributions>]

where date has the format: YYMMDD and time is formatted as HHMMSS in 24-
hour form. Specifying "GMT" references the time stamp to GMT time. After
receiving this command, the server responds with a response string followed
immediately by the list, terminated by a period character. The "<distributions>"
parameters determines the scope of the group search. For example, "<alt>" could
be specified to search for new groups in the "alt" category.

C_CONNECT_NEWS provides a ListNewGroups() method that accepts
the desired data stamp and a file name where the new group data will be written
once retrieved.

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

/!-----------------
!/ ListNewGroups() \

jj-~;~~~~~;~~~~--
11 This ~ethod retrieves a list of new newsgroups since a specified date
// a~d time from the server. This data is written into the specified
JJ file. The file will be created or overwritten if it already exists.

I/ Parameters:
II sedate - Date/time string to use as a starting point
II
II

szFil ename - File to which the list will be written

//Returns:
II
II

none

int C_CONNECT_NEWS::ListNewsGroups{ char *szDATE, char *szFilename)
{

char szBuffer[1024];
int iResult;

//Request the article
spri ntf (szBuffer, "newgroups %s\r\n", szDate) ;
Send(szBuffer);
Receive(szBuffer);

II Get the response back from the server
iResult = atoi{ szBuffer);

// If there was no error, load the response file
if(iResult < 400 && iResult > O)

LoadFile(szFilename);

return iResult;

Many news servers support several extensions to the NNTP command set
~hat are not documented in RFC 977. The primary goal of these extensions is to
~prove performance by reducing the network activity required to com lete a
given task. One of these extensions is the "XOVER" command, and there a;'e ve
few servers that do not support it. ry

XOVE~ is used to transfer the header information for a range of articles
back to the client. The alternative is to use the "HEAD" comm d d ch a ti 1 h d Th d an an parse ea
. r c e. ea ~r. e co e to accomplish this must also be tolerant of expired or miss-
~g articles ~the ~ange. ~OVER manages all of this automatically and returns an
\r\n. \r\n termmated list of tab-delimited article information in the format:

<Subject><tab><Author><tab><Date><tab><Message ID><tab><References>
<tab><Lines><tab><XRef>

NEWS CLASS 287

288

c_CONNECT_NEWS provides the Overview() method; this accepts a
starting and ending article number, forming the range of overview items that will
be written one per line to a specified file. Once this data is retrieved from the news
server, it is a relatively simple exercise to implement a parser to extract the
required field information from the lines in the file.

Be aware that not all servers support the "XOVER" extension to the com-
mand set, so you always need to check the result code from Overview(). If XOVER
is not supported, Overview() will return a number greater than or equal 400 (typ
ically a >500 result to indicate an unimplemented command). There are other ways
to find out the header information, as you will discover shortly.

11------------
11 Overview() \
11---
11 Description: II This method retrieves an article overview from the server and writes
II to the specified file name. lStart and lEnd specify the range of
II articles to overview.
II Note: the overview command is not supported on all servers.

II
I I Parameters:

- Starting message number for overview II lStart
- Starting message number for overview 11 l End
- File to which the overview will be written II szFilename

II
11 Returns:

none II
II int C_CONNECT_NEWS::Overview(ULONG lStart, ULONG lEnd, char *szFilename)
{

char szBuffer[1024];
int iResult;

II Request the article
sprintf(szBuffer, "xover %ld-%ld\r\n", lStart, lEnd);
Send(szBuffer);
Receive(szBuffer);

II Get the response back from the server
iResult = atoi(szBuffer);

II If there was no error, load the response file
if(iResult < 400 && iResult > 0)

LoadFile(szFilename);

return i Result;

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

. Think of each newsgroup on the server as a separate directory. In fact, this
is usually how a server stores individual article files. Like a subdirectory where
you need to use the CHDIR (or CD) command, you likewise need to send the
server a special command to select any given newsgroup; otherwise, you will not
be allowed to read any of the articles it contains. This command is called
"GROUP," and it accepts a newsgroup name as a parameter. For example:

GROUP comp.os.os2.announce

GROUP returns a response string that tells the client how many articles the
group currently has and the range of message numbers for these articles. Since the
total c~unt re~ed by the server is generally an approximation, we can typically
throw it away-if the exact total of articles is important to you, it is best to count
them. The first and last message numbers, however, are always accurate, but note
~at the range is not necessarily consecutive. Articles can expire or get lost occa
sionally, so do not assume that the range implies a given number of articles. For
example, it is perfectly valid for the server to return the range 100-275, although
the server may contain only 50 articles.

The C_CONNECT_NEWS::Group() method selects the specified news
group from the server and returns the message number of the first and last articles
in the group.

11---------
11 Group() \
11---11 Description:
II This method sends a GROUP command to the news server to select a new jj group. The server returns the first and last article numbers in the group.

11 Parameters:
II szGroup
II plFirstArticle
II pllastArticle
II
11 Returns:
II
II

none

- Newsgroup to select
- Pointer to First article number returned
- Pointer to Last article number returned

int C_CONNECT_NEWS::Group(char *szGroup,
ULONG *plFirstArticle, ULONG *pllastArticle, ULONG *plTotal)

char szBuffer[1024];
int
ULONG

iResponse;
lTotal;

II Send the group command
sprintf(szBuffer, "group %s\r\n", szGroup);
Send(szBuffer);

NEWS CLASS 289

290

Receive(szBuffer);

II Process the response
iResponse = atoi(szBuffer);
if(iResponse > 0 && iResponse < 300)
{

II Skip the unimportant parts
atol (strtok(szBuffer, " "));

II Get article information
*plTotal = atol(strtok(NULL, " "));
*plFirstArticle = atol (strtok(NULL, " "));
*pllastArticle = atol (strtok(NULL, " "));

return iResponse;

NNTP servers can be set to maintain an internal message pointer that cli
ents can use to control where they are positioned in the list of Usenet messages.
The C_CONNECT_NEWS command implements two methods, the first of which

is First().
First() sends a server STAT command with an article number to the server;

the server responds by setting its internal article pointer accordingly. This method
does not read the article-this can be achieved by issuing a HEAD, BODY, or
ARTICLE command to the server.

11---------
11 First() \
11---
11 Description:
II This method uses the internal indexing in the news server to select
II the specified article in the current newsgroup.

II
I I Parameters:
II lArticle - Article number to select

II
11 Returns:
11 none
II
int C_CONNECT_NEWS::First(ULONG lArticle)
{

char szBuffer[l024];
int iResult;

II Request the article
sprintf(szBuffer, "stat %ld\r\n", lArticle);
Send(szBuffer);
Receive(szBuffer);

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

II Get the response back from the server
iResult = atoi(szBuffer);

return iResult;

Once you have set the current article pointer, you must have some means
by which to move around the message list. NNTP provides NEXT and PREY com
mands to manage this. I will not implement the PREY command in C_NEWS
_CONNECT, but I will create a method to implement NEXT. The Next() method
instructs the server to increment its internal article pointer.

In the absence of server support for the XOYER command described earlier,
the combination of First() and Next() can be issued to achieve similar but signifi
cantly slower results.

11--------
11 Next() \
11---
11 Description:
II This method uses the internal indexing in the news server to select
II the next article in the current newsgroup. The article number is
II returned to the caller.
II
11 Parameters:
II plArticle - Pointer to article number selected
II
11 Returns:
II none
II
int C_CONNECT_NEWS::Next(ULONG *plArticle)
{

char szBuffer[l024];
int iResult;

II Request the article
sprintf(szBuffer, "next\r\n");
Send(szBuffer);
Receive(szBuffer);

II Get the response back from the server
iResult = atoi(szBuffer);

II If there was no error, load the response file
if(iResult < 400 && atoi(szBuffer) > O)

*plArticle = atol(szBuffer + 4);

return iResult;

NEWS CLASS 291

292

To read an article, the C_CONNECT_NEWS class needs to issue an ARTI
CLE command to the server. To accomplish this, an Article() method has been
implemented that reads an article to the specified file. This article file will consist
of both a message header and the message text itself.

Article() accepts an article number to read; however, if the specified article
number has a value of zero, the Article() method reads the article text indexed by
the server's intemal°pointer.

11-----------
11 Article() \
11---
11 Description:
II This method retrieves the article text for the specified article
II number from the server and writes the data to the filename supplied
II by the caller.
II
I I Parameters:
11 lArticle - Article number to retrieve
II
II

szFilename - Point to filename where output will be written.

11 Returns:
none II

II
int C_CONNECT_NEWS::Article(ULONG lArticle, char *szFilename)
{

char
int

szBuffer[1024];
iResult;

II Request the article
if(lArticle > 0)

sprintf(szBuffer, "article %ld\r\n", lArticle);
else

strcpy(szBuffer, "article\r\n");
Send(szBuffer);
Receive(szBuffer);

II Get the response back from the server
iResult = atoi(szBuffer);

II If there was no error, load the response file
if(iResult < 400 && atoi(szBuffer) > 0)

LoadFile(szFilename);

return iResult;

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

Depending on how you plan to implement your news client, you may not
want to read the article headers, or there may be times when all you require is the
message text proper. NNTP, and hence C_CONNECT_NEWS, supports a method,
Body(), that retrieves the body of a specified article. Body() can also accept an arti
cle number of zero, in which case the body for the message pointed to by the
server's internal message pointer is fetched into the specified output file.

11--------
11 Body() \
11---11 Description:
II This method retrieves the body text for the specified article number
II from the server and writes the data to the filename supplied by the
II caller. The header for the article is not retrieved by this method.
II
11 Parameters:
11 lArticle - Article number whose body is to be retrieved
II
II

szFilename - Point to filename where output will be written.

11 Returns:
II
II

none

int C_CONNECT_NEWS::Body(ULONG lArticle, char *szFilename)
{

char szBuffer[1024];
int iResult;

II Request the article
if(lArticle > 0)

sprintf(szBuffer, "body %ld\r\n", lArticle);
else

strcpy(szBuffer, "body\r\n") ;
Send(szBuffer);
Receive(szBuffer);

II Get the response back from the server
iResult = atoi(szBuffer);

II If there was no error, load the response file
if(iResult < 400 && atoi(szBuffer) > 0)

LoadFile(szFilename);

return iResult;

NEWS CLASS 293

294

Finally, we come to the last method in C_NEWS _CONNECT. The Head()
member function implements the HEAD command to the server. Head() accept.s
an article number of zero and retrieves only the Usenet message header for an arti
cle. This method would be used to retrieve the header for each article in a news
group for servers that d~ not implement the XOVER command.

11--------
11 Head() \
11---11 Description:
II This method retrieves the header text for the specified article number
II from the server and writes the data to the filename supplied by the
II caller. The body for the article is not retrieved by this method.
II
11 Parameters:

- Article number whose header is to be retrieved 11 lArticle
- Point to filename where output will be written. II

II
szFilename

11 Returns:
none II

II
int C_CONNECT_NEWS::Head(ULONG lArticle, char *szFilename)
{

char szBuffer[10242];
int iResult;

II Request the article
if(lArticle > 0)

sprintf(szBuffer, "head %ld\r\n", lArticle);
else

strcpy(szBuffer, "head\r\n") ;
Send(szBuffer);
Receive(szBuffer);

II Get the response back from the server
iResult = atoi(szBuffer);

II If there was no error, load the response file
if(iResult < 400 && atoi(szBuffer) > 0)

LoadFile(szFilename);

return i Result;

In this section we have implemented the C_CONNECT_NEWS class to
support NNTP news servers. Every command supported by NNTP protocol spec
ified in RFC 977 has not been implemented, and there are additional extensions,
which do not appear in the RFC, that I have also elected to ignore. However, the

NElWORK INTERFACE CLASS LIBRARY I CHAPTER 7

basic framework is here; should you decide that some functionality you need is
missing, you will hopefully have enough examples shown here to use as the basis
for new support.

FTP Class

File Transfer Protocol (FfP) was originally developed to assist with file sharing
between a client system and a typically larger server on the Internet. Among its
many strengths, this protocol eliminates the incompatibilities common among the
many file systems available today. Although FfP has undergone many enhance
ments since its inception, the basic file transfer structure has remained unchanged.

FfP is a bi-directional protocol, meaning that it can send commands and
receive data at the same time. This can happen because Ff P actually establishes
two connections-a control connection for command transfers between the client
and server, and a data connection to transfer files. The control connection is initi
ated during the initial interaction between the two hosts and lasts for the entire
FfP session. Data connections are dynamic and are linked and disconnected as
required to complete the file transfer.

Unlike the NNTP protocol we studied in the previous section, FfP has some
distinct advantages. FfP clients can abort file transfers, a feature NNTP desper
ately needs. Also, the FfP protocol supports binary file transfers, rather than the
uuencoded binaries required by the news protocol. This results in much more effi
cient data transfers.

The NETCLASS library offers a class to provide a simple interface to the
FfP protocol. Most of the Ff P command set defined in RFC 959 has been imple
mented, and any missing commands have been omitted solely because they are
uncommon in the normal operation of an Ff P client. Implementing support for
these commands should pose no particular problem should they be required later.

The current C_CONNECT_FfP class was developed specifically for the cli
ent end of the FfP connection. So far, I have not dealt with the server side of the
TCP/IP protocols, but armed with the knowledge built into NETCLASS, you
should be able to develop suitable server classes and associated server applica
tions. The C_CONNECT_Ffp class is illustrated in Figure 7-5.

C _CONNECT_FfP

C_MLE *pxcMLE C_FfP _CONNECT()
int iHash; int Open()

void Close()
int Send()
void Receive()
int Accept()
int Put()

FTP CLASS 295

296

C _CONNECT_FfP (Continued)

int Listen()

int SocketClose()

int SendOOB()

void FfPCommand()

int SYST()

int SITE()

int ACCT()

int USER()

int PASS()

int TYPE()

int PWD()

int CWD()

int RMD()

int MKD()

int DELE()

int DIR()

int ABOR()

int RETRO
int STOR()

int QUIT()

int NOOP()

Figure 7-5 C _CONNECT_FTP class

The C_CONNECT_FTP class was specifically designed to meet the needs of
the FTP client developed later in this book, and as such it possesses a few limita
tions. The class requires a reference to an MLE object where output such as com
mand responses and hash marks are written. If you are developing an FTP client of
your own design, you may want to remove this MLE reference from the class. It
was implemented in this class only for simplicity of design in the FTP client shown
in Chapter 11.

The header file for C_CONNECT_FTP is shown in Listing 7-4:

class C CONNECT FTP public C_CONNECT
{

private:
C MLE
int

public:
_Export

,*pxcMLE;
iHash;

II Pointer to console window, if any

C CONNECT FTP(char *szConnectServer, int iPort,
- - C_MLE *pxcConsole);

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

int _Export Open(void);
void _Export Close(void);
int _Export Send(char *szCommand);
void _Export Receive(char *szBuffer);
int _Export Accept(int iSocket, char *szFile);
int _Export Put(int iSocket, char *szFile);
int _Export Listen(void);
int _Export SocketClose(int iSocket);
int _Export SendOOB(char *szCommand);

II Command handlers
void _Export FTPCommand(char *szCommand);
int _Export SYST(void);
int _Export SITE(char *szText);
int _Export ACCT(char *szText);
int _Export USER(char *szText);
int _Export PASS(char *szText);
int _Export TYPE(char *szText);
int _Export PWD(char *szText);
int _Export CWD(char *szText);
int _Export RMD(char *szText);
int _Export MKD(char *szText);
int _Export DELE(char *szText);
int _Export DIR(char *szWildcards, char *szFil e) ;
int _Export ABOR(void);
int _Export RETR(char *szSrcFile, char *szDstFile);
int _Export STOR(char *szSrcFile, char *szDstFile);
int _Export QUIT(void);
int _Export NOOP(void);

};

Listing 7-4 NETFTP.HPP- Class definition for C_CONNECT_FTP

The C_CONNECT_FTP class provides a single constructor. This code sim
ply initializes the class attributes. If a console MLE window is defined, then it
should be spe~ified here; ~o':ever, it is important to note that the MLE parameter
can be NULL 1f you are buildmg an FTP client that is implemented differently from
the one defined in Chapter 11.

11-------------
11 Constructor\

11---11
II Description:
II This constructor initializes the instance of C CONNECT FTP.
II - -
11 Parameters:
11 szConnectServer - Address of the news server

FTP CLASS 297

298

II
II
II

iConnectPort - Port number to use for the connection
pxcConsole - Option MLE console window object

C CONNECT FTP::C CONNECT FTP(char *szConnectServer,
- - int iConnectPort, C_MLE *pxcConsole)

pxcMLE = pxcConsole;
iHash = O;

C_CONNECT(szConnectServer,

II If an MLE control was specified, trun on hash marks
if(pxcMLE)

iHash = 1;

iConnectPort)

Like the NNTP class we looked at in the previous section, the FfP socket
needs to be opened in order to establish a connection with the specified host.
C_CONNECT_FfP provides an Open() method to perform this task.

Open() reuses the C_CONNECT::Open() code, then extends the functional
ity to complete the FTP connection and reads the response from the host, once con
nection has been established.

11------
11 Open \
11---
11
I I Description:
II This method opens the FTP connection with the server. It uses the
II C_CONNECT::Open() method, then adds some FTP specific connection code.

II
11 Parameters:
II none
II
11 Returns:
II int - D_NET_OK if Open was successful

II
int C_CONNECT_FTP::Open(void
{

char szBuffer[1024];
int iResult;
int i Error;
int i Flag;

II Default to an error result
iError = D_NET_CONNECT;

II Call the parent to open the socket
iResult = C_CONNECT::Open();

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

if(iResult >= D NET OK)
{ - -

i Flag = 1;
setsockopt(Socket(), (short)SOL SOCKET, SO OOBINLINE

(char *)&iFlag, sizeo,f(iFlag));
do

memset(szBuffer, 0, 1024);
Receive(szBuffer);

if(atoi(szBuffer) > 400 I I strlen(szBuffer) < 4)
(

return 421;

while(szBuffer[3] '-');

II Connected OK
return D_NET_OK;

II Connected OK
return iError;

The Close() functionality from C_CONNECT is also reused. C CONNECT
_FfP overrides the Close() method defined in the parent class and before calling
this code, it sends an FfP "QUIT" command to the host. '

11-------
11 Close\

11---
11
11 Description:
II This method closes the FTP connection.
II
II Parameters:
II none
II
11 Return:
II none
II
void C_CONNECT_FTP::Close(void)
{

II Send a quit command to end the conversation
Send("QUIT\r\n");

II Call the parent close to kill the socket
C_CONNECT::Close();

FTP CLASS 299

300

The C_CONNECT_FfP class implements a Send() method to issue FfP

commands to the host. If the MLE object was defined at the time the FTP class was

instantiated, all data sent to the host is also echoed to the MLE console window.

This is not necessarily a useful feature, since this will echo all command strings,

including passwords and account information passed to the host-a potentially

crippling problem if you plan to use this class in a complete FfP application.

/!-----
/!Send \
/!---
/!
//Description:
// This method sends a convnand to the FTP server. It uses the

// C_CONNECT::Send() method but adds hash marks to the MLE,

// if available.
II
// Parameters:
// szConvnand - Command to send to the server

II
//Return:
// int - Result of the send operation

II
int C_CONNECT_FTP::Send(char *szConvnand)
{

int i Result;

//Write command to the console window if it is present
if(pxcMLE)

pxcMLE->Insert(szCommand);

//Send the convnand to the server
iResult = C_CONNECT::Send(szCommand);

return iResult;

The C_CONNECT_FTP::Receive() method uses the Receive() code from its

parent to collect any responses from the host. If the MLE console window has been

defined, then all replies are echoed to the display.
Receive() collects responses from the server in a special way. The FTP spec

ification requires that all responses will be preceded by a numerical error status,

much like most other TCP/IP protocols. However, the RFC also states that any

error value that is immediately followed by a 11
-

11 character indicates the presence

of additional response text on subsequent lines. Receive() collects lines of text from

the host connection until it finds a line that does not include the 11
-

11 after the error

number.

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

!!--------
// Receive \

/!--// -------------------------
//Description:

// This method receives a string from the FTP server. It uses the

II C_CONNECT::Receive() method, but adds the returned string to the
II MLE, if available.
II
// Parameters:

II szBuffer - Pointer to target area for the received line.
II
//Returns:
// none
II
void C_CONNECT_FTP::Receive(char *szBuffer)
{

memset(szBuffer, 0, 256);
do {

//Read a response from the FTP server
C_CONNECT::Receive(szBuffer);

//Display the line on the console if it is present
if (pxcMLE)
{

pxcMLE->Insert(szBuffer);
pxcMLE->Insert("\n");

//Repeat until we don't get a line continuation ie '230-'

while((strlen(szBuffer) != 0 && !isdigit(*szBuffer)) I I
*(szBuffer+3) == 1

-
1

);

I mentioned earlier that FTP actually involves two network connections

The s.end() and Receive() methods manage the control connection; so far we hav~
not discussed ho~ data transfers are managed. C_CONNECT_FfP provides two

methods of handling data manipulation. The first of these is Listen(), with an

almost self-explanatory operation-it listens for a data connection from the host.

However, a ~ot of ~peci~lized code is executed so we need to go into some detail.

. The ~rst thing Listen() does is to create a new socket to listen for the host.

This socket I~ bound to a. socket structure, and the TCP/IP API listen() function is

called. '!he hsten() function completes the socket-binding process and creates a

co~ection request queue that will be used later in order to accept incoming con

nection requests. Once the listen() API returns, the code issues a PORT command

to the host to complete the setup for the listener socket.

FTP CLASS 301

302

11--------
11 Listen \ -------------------------11--
II
II Description: "f II This method listens for a data connection from the _ ser~er and, ,
II found, binds this connection to a socket so corrmun1cat1on can occur.

II
11 Parameters:
II none
II
II Return: II int - Data socket >O if successful

II .
int C_CONNECT_FTP::Listen(void)
{

char *a;
char *p;
char szString[l024];
int iSocket;
int i Length;
int i Flag = 1;
struct sockaddr_in xtTempSocket;
struct sockaddr_in xtlistenSocket;

II Connect to the news reader port
xtListenSocket.sin family= AF_INET;
xtListenSocket.sin-port = htons(0);
xtListenSocket.sin=addr.s_addr = O;

II Open a socket for this connection
iSocket =socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if(;socket == -1)

return D_NET_SOCKET;

II Reuse any previous port that may already exist
if(setsockopt{ iSocket, SOL_SOCKET, SO_REUSEADDR, (char *)&iFlag,

sizeof(iFlag)) < 0)

return D_NET_CONNECT;

II Bind the listener socket to a data connection
if(bind(;socket, (struct sockaddr *)&xtListenSocket, .

sizeof(struct sockaddr_1n)) < 0)

return -1;

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

II Get the name of the listener socket and save it
iLength = sizeof(struct sockaddr_in };
if(getsockname(iSocket, (struct sockaddr *)&xtListenSocket,

return D_NET_CONNECT;

II Listen for a data connection request from the server
if{ listen(iSocket, 1) != O)
{

soclose(iSocket);

II Inform remote host about the port we are using
iLength = sizeof(struct sockaddr_in);

&iLength) < 0)

getsockname(Socket(), (struct sockaddr *)&xtTempSocket, &iLength);
a = (char *)&xtTempSocket.sin addr;
p = (char *}&xtListenSocket.sin_port;
sprintf(szString, "PORT %d,%d,%d,%d,%d,%d\r\n",

Send(szString);
Receive(szString);

(UC HAR) a [O], (UCHAR) a [1] , (UCHAR) a [2] ,
(UCHAR) a [3] , (UCHAR) p [O] , (UC HAR) p [1]) ;

II Return the listen socket to the caller
return iSocket;

To complement Listen(), C_CONNECT_FI'P also implements an Accept()
method responsible for completing a data link by accepting a connection on the
socket setup by Listen(). Accept() first calls the TCP/IP accept() API to wait until a
connection is established between client and server. The accept() call then returns
a new data socket to the server, with which it communicates with the client.

Since C_CONNECT_FI'P::Accept() is always used to transfer binary data, it
then creates the binary file whose name was passed by the caller. All data is then
retrieved from the host using the TCP/IP recv() function, and written to the file
using a standard C fwrite().

Instead of the C file functions fopen(), fwrite(), and fclose(), you could
rewrite Accept() to use C++ streams. I elected to use the standard C code so that C
programmers could use this function without a complete rewrite.

If the console MLE window was specified when the object was created,
hash marks will be displayed for each block of data received. Upon completion of
the binary transfer, the data connection is destroyed, since it is no longer required.

FTP CLASS 303

304

11--------
11 Accept\
11---
11
II Description: II This method accepts a block of binary ~ata fr~m the ~erver and II writes it to the specified file. Data is retrieved via a data
II connection initiated by the server.
II
I I Parameters:

- Control socket 11 i Socket
- Pointer to out file where data will be written 11 szFi le

II
11 Return:

- Returns zero if successful 11 int
II
int C_CONNECT_FTP::Accept(int iSocket, char *szFile)
{

char *szBuffer;
FILE *hFile;
int iDataSocket;
int iResult;
int ilength;
struct sockaddr_in xtTempSocket;

II Remove any old file that may be present
DosForceDelete((PSZ)szFile);

II Accept a data socket from the server
ilength = sizeof(struct sockaddr_in);
iDataSocket = accept(iSocket, (sockaddr *)&xtTempSocket, &ilength);

II Close the listener socket
soclose(iSocket);
if(iDataSocket < 0)

return iDataSocket;

szBuffer = (char *)malloc(8192);

II Read data into a file
hFile = fopen(szFile, "w+b") ;
if (hFi le)
{

do {
II Receive a packet of information
iResult = recv((short)iOataSocket, szBuffer, 8192, 0 };
if(i Result > 0)
{

II Write the data to the output file

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

fwrite(szBuffer, 1, iResult, hFile };

II If hash marking is on, then display hashes
if(iHash && pxcMLE)

pxcMLE->Insert("#");
while(iResult > 0);

fclose(hFile };

II If hash marking is on, then display a new line to end the hash marks
if(iHash && pxcMLE)

pxcMLE->Insert(11 \n");

II Done with the data socket so dispose of it.
soclose(iDataSocket);

free(szBuffer);
return O;

The C_CONNECT defines a Close() method; however, this specifically
closes the control connection. Since C_CONNECT_FfP creates some additional
sockets, notably listener and data sockets, a new method is required to permit
destruction of specific sockets.

SocketClose() performs this task by accepting a socket identifier, and calling
the TCP/IP soclose() function to close it. Unlike C_CONNECT::Close(), Socket
Close() does not call the shutdown(). C_CONNECT_FfP recycles sockets so there
is no need to shut them down.

11-------------
11 SocketClose \
11---11
II Description:
II This method closes a specified data socket.
II
11 Parameters:
II iSocket - Data socket to close
II
11 Return:
II int - Always returns D_NET_OK
II
int C CONNECT FTP::SocketClose(int iSocket) { - -

soclose(iSocket);
return D_NET_OK;

FTP CLASS 305

306

At the beginning of this section, I mentioned that the FfP protocol has pro

visions to abort operations between client and server. To accomplish this, the pro

tocol supports what is termed "out-of-band" signaling, which lets the client send

a high-priority message to the host.
C_CONNECT_FfP provides a special method called SendOOB, which uses

the send() API to issue an out-of-band signal. Under normal operation, this

method will not be used-typically, it is the exclusive domain of the ABOR()

method that will be shown later.

11---------
11 SendOOB \

11---
11
11 Description:
II This method sends an out-of-band co1T111and to the FTP server.

II
11 Parameters:
I I szCommand - OOB convnand to issue

II
11 Return:
II int - Result of send co11111and

II
int C_CONNECT_FTP::SendOOB(char *szC011111and)
{

return send(Socket(), szC011111and, (short)strlen(szC01T111and), MSG_OOB);

Since the Ff P protocol is designed specifically for transferring files, we

should take a look at some of the mechanisms to accomplish this task. We have

already examined the Accept() method that receives data from the server, but we

have not seen a way to send files.
The Put() method in C_CONNECT_FfP performs this operation .. Put() cre

ates a data socket by calling accept() to accept the connection set up by the host.

Once the data connection is established, the requested file is opened and transmit

ted to the host. When the file transfer is complete, the data connection is closed.

11-----
11 Put \
11---
11
II Description:
II This method transfers a file to the server using the specified

II data socket.

II
11 Parameters:
II iSocket - Data socket to use for transmission

11 szFi le - Name of file to transfer

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

II
II Return:
II int - 0 if successful
II
int C_CONNECT_FTP::Put(int iSocket, char *szFile)
{

char *szBuffer;
FILE *hFile;
int iDataSocket;
int iResult;
int ilength;
struct sockaddr in xtTempSocket;

II Accept a data connection from the server
ilength = sizeof(struct sockaddr in);

iDataSocket =accept(iSocket, (sockaddr *)&xtTempSocket, &ilength):

II Close the listener socket
soclose(iSocket);
if(iDataSocket < O)

return iDataSocket;

szBuffer = (char *)malloc(8192);

II Read data into a file
hFile = fopen(szFile, "rb");
if(hFile)
{

iResult = l;
while(iResult > O)
{

iResult = fread(szBuffer, 1, 8192, hFile);

send((short)iDataSocket, szBuffer, (short)iResult, o);

II If hash marking is on, then display hashes
if(iHash && pxcMLE)

pxcMLE->Insert("#");

fclose(hFile);

II If hash marking is on, then display a new line
if(iHash && pxcMLE)

pxcMLE->Insert("\n");

free(szBuffer);

soclose(iDataSocket);
return O;

FTP CLASS 307

308

With the low-level FTP interface behind us, the remainder of the class is rel

atively simple. All the remaining code is used to implement the FTP command set,

as specified by the RFC. Since all these commands operate in much the same way,

all commands use the command FTPCommand() method; this sends the specified

command using the control connection and receives the host response.

11------------
11 FTPCorrmand \
11---
11
I I Description:
II This method sends an FTP corrmand to the server and retrieves the
II response string.
II
11 Parameters:
11 szCorrmand - Corrmand to send

II
11 Return:
II none
II
void C_CONNECT_FTP::FTPCommand(char *szCorrmand)
{

II Send an FTP corrmand to the server
Send(szCorrmand);

II Get the command reply from the server
Receive(szCommand);

SYST() implements the FTP SYST command, which returns the type of FTP

server software running on the server. This can be used to help determine the type

of file system, information that is useful if you plan to write an FTP client to parse

directory listings and display them graphically.

11------
11 SYST \
11---
11
11 Description:
II This method sends a SYST corrmand to determine the server type.

II
11 Parameters:
II none
II
11 Return:
I I int - Result of the corrmand

II

NETWORK INTERFACE CL.ASS LIBRARY I CHAPTER 7

int C_CONNECT_FTP::SYST(void)
{

char szString[l024];

II Send the SYST command and get the server response
sprintf(szString; "SYST\r\n");
FTPCorrmand(szString);

return atoi(szString);

The SITE command can be used to issue special server commands that are

not standard to the FTP protocol. Some firewall security systems use SITE to estab
lish a link through the firewall.

11------
11 SITE \

11---
11
II Description:
II This method sends a SITE command to issue server specific corrmand.
II
11 Parameters:
II szText - Specific server corrmand to send
II
11 Return:
11 int - Result of the corrmand
II
int C_CONNECT_FTP::SITE(char *szText)
{

char szString[l024];

sprintf(szString, "SITE %s\r\n", szText);
FTPCorrmand(szString);

return atoi(szString);

The ACCT command sends some additional account information to the

serv~r. Some servers require this command be issued as part of the login process,
and it may also be used as part of the site firewall security.

11------
11 ACCT \

11---
11
II Description:
II This method sends an ACCT corrmand to issue any required account data.

FTP CLASS 309

310

II
11 Parameters:
11 szText - Account information

II
II Return:
11 int - Result of the command

II
int C_CONNECT_FTP::ACCT(char *szText
{

char szString[1024];

sprintf(szString, "ACCT %s\r\n", szText);
FTPCommand(szString);

return atoi(szString);

The USER command is sent to the server as part of the login process. This
command must be accompanied by the user name, and is usually the first com

mand issued to a server.

11------
11 USER\
11---
11
II Description:
II This method sends a USER command to issue log in user name.

II
I I Parameters:
11 szText - Username
II
11 Return:
II int - Result of the command

II
int C_CONNECT_FTP::USER(char *szText
{

char szString[1024];

sprintf(szString, "USER %s\r\n", szText);
FTPCommand(szString);
return atoi(szString);

PASS is normally the second command sent to a server. Most servers imple
ment security requiring that a password be issued as part of the login process. FTP

clients send a PASS command, accompanied by the password text, and the server
verifies the account information.

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

11------
11 PASS \

11---11
II Description:
II This method sends a PASS command to issue log in password.
II
11 Parameters:
11 szText - Password
II
II Return:
I I int - Resu 1t of the command
II
int C_CONNECT_FTP::PASS(char *szText)
{

char szString[1024];

sprintf(szString, "PASS %s\r\n", szText);
FTPCommand{ szString);
return atoi(szString);

The TYPE command sets the type of file transfer to use between the client
and the server. Valid TYPE parameters are:

A

E

I

L

11------
11 TYPE \

Transfers will be performed using standard ASCII text.

EBCDIC file transfers. This is very uncommon today.

Files are transferred in binary mode.

Files are transferred according to a specified local byte size.
This is another uncommon mode.

jj---
11 Description:
jj This method sends a TYPE command to set the transfer mode.

11 Parameters:
II szType - Transfer type {I,A,E,L)
II
11 Return:
11 i nt - Resu 1 t of the command
II
int C_CONNECT_FTP::TYPE{ char *szType)

FTP CLASS 311

312

char szStri ng [1024];

II Set the transfer type
sprintf(szString, "TYPE %s\r\n", szType);
FTPConmand(szString);
return atoi(szString);

To request the working directory, use the PWD() method. This returns the
complete server directory as a NULL-terminated string.

11-----
11 PWD \
11---
11
II Description:
II This method sends a PWD cormnand to return the current directory.

II
I I Parameters:
II szDir - Returned directory
II
11 Return:
11 int - Result of the co111Tiand

II
int C_CONNECT_FTP::PWD(char *szDir)
{

char szString[l024];

II Send the PWD conunand and get the server response
sprintf(szString, "PWD\r\n");
FTPConmand(szString);

II Return the working directory to the caller
strcpy(szDir, "");
if(atoi(szString) >= 250 && atoi(szString) < 300)
{

if(strstr(szString, "\""))
{

strcpy(szDir, strstr(szString, "\"") + 1) ;
if(strstr(szDir, "\""))

*strstr(szDir, "\"") = O;

II If the directory wasn't located then it may be enclosed in [] chars
if(strlen(szDir) == 0 && strstr(szString, "["))
{

strcpy(szDir, szString + 4);

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

if(strstr(szDir, "]")
*(strstr(szDir, "]" + 1) = O;

return atoi(szString);

The CWD() method changes the working directory on the server. This
directory string can be a full path name or a reference from the current working
directory.

11-----
11 CWD \
11---
11
11 Description:
II This method sends a CWD cormnand to set the current work directory.
II
11 Parameters:
11 szDi r - New working di rectory
II
II Return:
11 int - Result of the cormnand
II
int C_CONNECT_FTP::CWD(char *szDir)
{

char szStri ng [1024];

sprintf(szString, "CWD %s\r\n", szDir);
FTPConmand(szString);
return atoi(szString);

The RMD() method removes a directory from the server. Server security
may prevent this command from being completed.

11------
11 RMD \
11---
11
11 Description:
II This method sends an RMD conunand to remove a directory.
II
11 Parameters:
11 szFi le - Di rectory to remove
II
11 Return:

FTP CLASS 313

314

11 int - Result of the co11UT1and

II
int C_CONNECT_FTP::RMD(char *szFile)
{

char szString[1024];

sprintf(szString, "RMD %s\r\n", szFile) ;
FTPC011UT1and(szString);
return atoi(szString);

MKD() makes new directories on the server. The string passed to this
method can consist of a full path or a relative offset from the current working

directory.

11-----
11 MKD \
11---
11
11 Description:
II This method sends an MKD command to create a directory.

II
11 Parameters:
11 szFi 1 e - Di rectory to create

II
11 Return:
11 int - Result of the co11UT1and

II
int C_CONNECT_FTP::MKD(char *szFile)
{

char szString[1024];

sprintf(szString, "MKD %s\r\n", szFile);
FTPConmand(szString);
return atoi(szString);

DELEO accepts either full path name or relative offset for a file on the server
to be deleted. This operation may be prevented by server security.

11------
11 DELE \
11---
11
11 Description:
II This method sends a DELE command to remove a file.

II
I I Parameters:

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

11 szFil e - File to remove
II
11 Return:
11 int - Result of the command
II
int C_CONNECT_FTP::DELE(char *szFile)
{

char szString[1024];

sprintf(szString, "DELE %s\r\n", szFile);
FTPC011UT1and(szString);
return atoi(szString);

The DIR() method is used to return a directory listing from the server. The
method accepts a parameter that specifies the full pathname including any wild
cards. The directory list is then retrieved to the specified file. If the console MLE
window was defined when the object was created, output is written to the display
window rather than the file.

11-----
11 DIR \

11---
11
11 Description:
II This method fetches a directory listing for the current directory
II from the server.
II
11 Parameters:
II szWildCards
11 szFile
II
11 Return:
11 int
II

- Any filename wildcards used for the listing
- Output file for the listing

- 0 if successful

int C_CONNECT_FTP::DIR(char *szWildcards, char *szFile)
{

char
int
FILE

szSt ring [1024] ;
i Listener;
*hFile;

II List for a reply connection
iListener =Listen();

II Send the command to the server
if(!szWildcards I I strlen(szWildcards) == O)

sprintf(szString, "LIST\r\n");
else

FTP CLASS 315

316

sprintf(szString, "LIST %s\r\n", szWildcards);
FTPC01T111and(szString);

II Flag inaccessible directories
if(atoi(szString) > 500 I I atoi(szString) == 425)
{

SocketClose(iListener);
return atoi(szString);

if(Accept{ iListener, szFile) >= 0)
{

}

II Display the directory if the MLE window is defined
if(pxcMLE)
{

hFile = fopen(szFile, "rt");
if(hFile)
{

II Display each line of the directory in the console window
while(!feof(hFile) && fgets(szString, 1024, hFile))

pxcMLE->Insert(szString);

fclose(hFile);

DosForceDelete(szFile);

Receive(szString);
SocketClose(iListener);
return atoi(szString);

SocketClose(iListener);
return O;

The ABOR() method is a special-purpose function. It can be used to abort an
FTP operation and will close any data connections. This can be used to terminate a
file transfer.

ABOR() sends a termination string using the SendOOB() out-of-band trans
mission method, and then simply waits for the server to acknowledge the abort
operation on the control connection. The TCP/IP select() API waits up to 18,000
milliseconds (18 seconds) for the server to respond. If no response is received, the
ABOR() method assumes that connection has been lost and continues as if the
abort operation was successful.

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

11------
11 ABOR \
11---
11 Desert pti on:
II This method implements the transfer abort functionality specified in
II RFC 959.
II
int C_CONNECT_FTP::ABOR(void)
{

SHORT sock_arr[5];
char szString[1024] ;
int iResult;

II Send the abort sequence
sprintf(szString,"%c%c\r\n",255,244);
Send(szString);
sprintf(szString,"%c%c",255,242);
SendOOB(szString);
Send("ABOR\r\n") ;

II Wait for the server to respond
sock_arr[O] = (short)Socket{);
do {

iResult =select((int *)sock arr, 1, 0, 0, 18000L);
C_CONNECT::Receive(szString);

while(iResult > 0 && strlen(szString) == O);

return O;

The RETRO method retrieves files from the server using the currently
selected transfer mode. The code accepts both a source file name and a destination
file name. This means that a file can be renamed during the transfer simply by
specifying different name strings.

11------
11 RETR \
11---
11
II Description:
II This method sends a RETR command to retrieve a file.
II
11 Parameters:
11 szSrcFil e - Source file to retrieve
II szDstFile - Local file location where retrieval will be written
II
11 Return:
I I int - Result of the command

FTP CLASS 317

318

;~t C_CONNECT_FTP::RETR(char *szSrcFile, char *szDstFile)
{

char szString[1024];
int iListener;

iListener =Listen();
sprintf(szString, "RETR %s\r\n", szSrcFile);
FTPCommand(szString);

if(atoi(szString) > 500)
return 550;

if(Accept(iListener, szDstFile) >= 0)
{

}

Receive(szString);

SocketClose(iListener);
return atoi(szString);

SocketClose(iListener);
return O;

To transfer a file from the local drive to the remote host, C_CONNECT-:-FTP
implements a STOR() method. This simply invokes the Put(). method (described
previously) to transfer the specified source file to the l~~ati~n selected for the
remote file. Like RETR(), different file names can be specified m order to rename
the file during the file transfer.

11------
11 STOR \
11---
11
11 Description:
II This method sends a STOR command to send a file to the server.

II
11 Parameters:
II szSrcFile
II szDstFile

- Source file to send
- Remote file location where the file will be written

II
11 Return:
11 int - Result of the command

;~t C_CONNECT_FTP::STOR(char *szSrcFile, char *szDstFile)
{

char szString[1024];
int iListener;

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

iListener =Listen();
sprintf(szString, "STOR %s\r\n", szDstFile);
FTPCommand(szString);

if(atoi(szString) > 500)
return 550;

if(Put(iListener, szSrcFile) >= 0)
{

Receive(szString);
SocketClose(iListener);
return atoi(szString);

SocketClose(iListener);
return O;

To end the FTP session with the remote host, the client needs to call the
QUIT() method. This forces the server to disconnect the control socket.

11------
11 QUIT \
11---
11
II Description:
II This method sends a QUIT command to end the conversation.
II
11 Parameters:
II none
II
II Return:
11 int - Result of the command
II
int C_CONNECT_FTP::QUIT(void)
{

char szString[1024];

II Send the QUIT command and get the server response
sprintf(szString, "QUIT\r\n");
FTPCommand(szString);

return atoi(szString);

The final command implemented in C_CONNECT_FTP is the NOOP()
method. Typically, servers will automatically disconnect any connection that is
idle for a specified amount of time. You can use NOOP() periodically to issue a
command to "fool" the server into believing that the connection is busy. This
method does nothing to affect file transfer or the general state of the connection.

FTP CLASS 319

320

11------
11 NOOP \
11---
11
II Description:
II This method sends a NOOP co11111and to perform "no operation".

II
I I Parameters:
11 none
II
11 Return:
11 int - Result of the co11111and

II
int C_CONNECT_FTP::NOOP(void)
{

char szString[1024];

II Send the NOOP command and get the server response
sprintf(szString, "NOOP\r\n");
FTPCommand(szString);

return atoi(szString);

The C_CONNECT_FTP class barely scratches the surface of the capabilities
built into the FTP protocol. For example, no support for passive server-to-server
file transfers has been implemented. This feature is crucial to some users.

We have not delved too deeply into the interaction between client and
server. Each command issued by the client invokes a response from the server, but
I have given little detail on response codes returned by the server. The following
table summarizes some of the more common responses returned from the remote
host. This is by no means a complete list.

125 Data connection already open

200 Command OK
211 System status or system help reply

212 Directory status

213 File status

214 Help message
215 NAME system type, where NAME is the name of the FTP server in use

220 Server ready for new user

221

225

226

227

Server closing control connection

Data connection open

Closing data connection

Entering passive mode

NETWORK INTERFACE CLASS LIBRARY I CHAPTER 7

230

331

332

421

425

426

500

501

502

503

504

530

532

User logged in

User name OK, password required

Need account for log in

Service not available

Can't open data connection

Connection closed, transfer aborted

Syntax Error, command not recognized

Syntax error in command arguments

Command not implemented

Bad sequence of commands

Command not implemented for that parameter

Not logged in

Need account for storing files

For more details on the FfP protocol or response codes, refer to RFC 959.

Developing Other Network Classes

If you are building TCP/IP applications, you are going to want to write some new
code to support other application protocols. For example, you may want to create
a network class that implements the Internet Relay Chat (IRC) protocol.

This, of course, means that you need to know something about IRC and
how it works, but also implies that you are prepared to dig into some lower-level
socket programming. However, creating classes for new protocols should not
intimidate you-we have already built several in this chapter, and you can use
these. as a basic template from which to create new classes. Whenever you consider
creating new network classes, remember that much of your potential work has
already been handled by the C_CONNECT class. Before you implement new code,
~e su~e you understand the base network class to avoid reinventing some func
tionality that has already been implemented in C_CONNECT.

The base class should be able to address most of the low-level socket issues
for any new protocol, for either the client or server side of a connection. Any new
classes you develop should have a minimum of new code. Remember to reuse
whenever possible!

Building a Connection Manager

There are some obvious problems with using TCP/IP in a multitasking environ
me~t. Althou~h it ~s an almost trivial exercise to write multithreaded 05/2 appli
cations, keep m mmd that a TCP/IP connection is inherently single tasking. For
example, if we write a program to connect to a news server and subsequently ask

DEVELOPING OTHER NETWORK CLASSES 321

322

the server for a list of all available newsgroups, the network pipe between our

application and the server cannot process anything else until the server finishes

sending the list (a potentially time-consuming task). If we were writing Microsoft

Windows 3.1 applications, this really would not be an issue, since Windows does

not multitask very well anyway. In 05/2, however, we can effectively perform sev

eral tasks simultaneously, so we need to find a solution.

When I wrote NeoLogic News, I adopted an approach whereby the news

client could create multiple connections to the server. This way, if one connection

was busy and the user decided to initiate a new network task, the program could

quickly accommodate the request. This approach was later "borrowed" by the

NewsReader /2 people at IBM, although I am not sure they really grasped the full

potential of multiple connections.
NeoLogic News uses a special piece of code called a connection manager;

this monitors user requests for network access and provides one of several active

news connections for the task. Although this code can be quite complex, what it

amounts to is a supervisory process that monitors the activity on current connec

tions, assigning the first free connection to the process that needs it. The goal in all

this extra coding is to keep the user busy-we want our applications to offer

remarkable response. This is not easy to achieve with a single connection.

In Part III, as part of the news program, we will implement a very simple

connection manager. This will not be nearly as complex as the one implemented in

the NeoLogic News product, but it will be sophisticated enough to demonstrate

how to create an effective connection manager for a news client. You can take it

from there, implementing something much more powerful without investing sig

nificant amounts of time.
The NNTP protocol demands that a connection be established and main

tained for the entire user session. With a Gopher or FTP client, we can adopt a dif

ferent kind of connection manager that is much easier to implement and

understand. With these protocols, there is typically no permanent connection. A

Gopher client can connect to a specified page of data, retrieve it, and then discon

nect. The FTP protocol is similar, in that one connection is dedicated to one session,

and therefore connection management is virtually self-controlled. Each time an

instance of a Gopher connection is established, a physical connection is created

and maintained, isolated from other connections. This means that we can write an

application capable of requesting several pages simultaneously. More importantly,

if one Gopher connection is busy downloading a large uuencoded binary, there is

no reason to prevent the user from regaining access to the Gopher program to

make other requests. Incidentally, the Gopher client provided in the IBM Warp

Internet Access Kit does not offer this advantage, for some unexplained reason.

The same thinking applies to the FTP protocol. The same FTP client should have

the capability of connecting to several servers simultaneously, and of transferring

files to or from any of these sources.

NE1WORK INTERFACE CL.ASS LIBRARY I CHAPTER 7

Chapter Summary

In this cha?t~r, you have lea~ed about the contents of the NETCLASS class library

and how it mterconnects with the TCP/IP API and run-time libraries. We have

developed a base C_CONNECT network class and derived three of the more com

mon p_rotocols~Ping, News, and FTP. We have also discussed ways to expand this

class library to mcorporate other network protocols. It is hoped you will now be

comfortable with the prospect of designing complete network classes for your

own TCP/IP applications.

~inally, we discussed t~e concept of a connection manager class and why

you rmght want one. Connection managers may be important to you if you are

interested in creating applications that can perform more than a single network

task at any given time. Performing multiple network activities is an excellent way

to demonstrate a key benefit of OS/2-performance. You should seriously con

sider implementing a connection manager class for applications you develop.

The NETCLASS class library will be used to develop all the applications in

Part III of this book. In order to ensure that you understand the concepts presented

in this chapter, you could write some simple test code to make sure you under

stand what is happening inside the methods. Most development systems include

very good debuggers-don't hesitate to use them if you need to.

CHAPTER SUMMARY 323

Building Applications

Finally, we arrive at the third part of this book where we will start to build some
practical applications. In order to get up to speed with the class libraries, the first
application we will tackle will be an improved system editor. It is an ambitious
project, but the result will be an application infinitely more useful than a sequence
of increasingly complex "Hello World" programs.

With our indoctrination into PMCLASS and NVCLASS behind us, we will
start to build some actual TCP/IP applications. We will start out with something
very simple like Ping and work our way up to more intricate applications like
news and FTP. Although these applications will be somewhat limited, I have pur
posely left lots of doors open to you with the hope that you will venture out on
your own to add enhancements to my applications and eventually begin develop
ing your own.

It has been a long road to this point, but we now have complete classes in
place for just about everything we will need. As you will see, the applications will
come together quite quickly because we have devoted so much time to creating
solid class libraries.

Well, let's get started.

325

./ Creating an improved system editor

./ Implementing toolbars in applications

,/ Displaying dialog boxes from a resource file

Coding the Editor

An Improved Editor

I said earlier that, if we really wanted to, we could build an improved version of

the OS/2 system editor, E. Since you are learning the basics of OS/2, Presentation

Manager, and the class libraries, this offers you a good opportunity to build some

thing useful and at the same time learn how all of this capability interrelates.

In this chapter, we will begin to build our first practical application. What

we will try to achieve is to build an editor that will be of use later. Rather than

inundate you with a lengthy source listing, I will instead start from a fundamental

program framework and add functionality a piece at a time.
Our goal is to reproduce the functionality of E, including most of its menu

operations. We will improve on E somewhat with the addition of an appealing and

useful toolbar and some status information. We will also make our improved edi

tor Workplace Shell aware by adding support for drag-and-drop colors and fonts,

selected from the system palettes.
Figure 8-1 is an output sample of the program we are going to create in this

section. Initially, the editor will in no way resemble this picture, but though we will

start from humble beginnings, the editor will quickly take shape. You will see that

with a good plan up front, incremental development is relatively simple.

Let's begin with a minimal program. This code simply creates a basic frame

window that you can size and move around the desktop. You can also maximize

or minimize it and it will appear in the WPS task list. It isn't a very fancy program

now, but it will get better.

327

328

psan.111 • (t'JilmD~lH •)pzc!Illr...,d.~>Tb.rQ!Od.Date.();

,' I cr w a PM prcc""" rar t.b1s tllr"""d.
pll<!Tllraad->tn1c1at1zanraad(J:

/ I t.alld cbe 11111u-11na ...Sitar wttll' t.ba art1.,1e rue
psaTbls->MLE ()-)Load. (pllc'tbis->EIDt:tOllBtatus (). pz"'1ll1 .. ->t11"());

/I tsalac" U." !11" .portion· al" "t.b" P"ll>llADll
11tr<!py\ s:z:J'11•. pll<!Tll1s->P'11"()) :
1£ { sttst::r (,;:z:lll.,, "'"°))
{

st.rNV { s:z:J'il" H
•.,trllU'(..:P'll<I. "·8') • D;
sU'n>V { s:z:J'ila) ;

/ I Put "t.ba DalJ8 af tba fll" la "t.b" t1 tlOlbnr·
spr·intr (112str1119, "J:llhu""d. sy..tam J:d.i tor - 11(11 •. 11:z:J'l la) :
psan111->!lat:Tit1'11(1126t:ring J:

Figure 8·1 Enhanced editor

The first thing we need to do is create a module definition file. This isn't a
strict requirement of developing a simple application, but larger programs like the
completed editor will usually require one. The DEF file for the editor application
is shown in Listing 8-1.

NAME
DESCRIPTION
DATA

STACKSIZE
HEAPSIZE

PROTMODE

Listing 8·1

ImprovedEditor WINDOWAPI
'Improved OSl2 Editor - (c) 1995 by Steven Gutz'
MULTIPLE

16000
16000

EDITOR.DEF

Seems pretty straightforward, doesn't it? The first field, NAME, identifies
the module as an "lmprovedEditor" and the WINDOWAPI indicates that this
module is a PM application. WINDOWAPI causes the linker to build the EXE so
that it informs 05/2 that the PM engine needs to be running when this application
is started.

The DESCRIPTION field is a text description of what our program is. The
field gets embedded in the final executable by the linker, so you can place your
copyright notice here if you wish.

The DATA statement defines the default characteristics for data segments
used by the program. In this case, data segments are shared amongst all running
copies of the program.

AN IMPROVED EDITOR I CHAPTER 8

The STACKSIZE statement specifies how many bytes of memory are to be
reserved for the program stack. For PM applications the minimum stack size is
around 4 Kbytes, but a larger stack is recommended-we'll use 16 K for the editor
program and larger stacks in some of the other applications shown later.

. ~e HE~IZ~ line defines the initial size of the free memory pool for the
application. ~s area is used to store the automatic data created by the program or
for an! dynanuc memory we allocate in our application. In our editor application
we will use a 16K heap, but the applications developed later will increase this
number substantially.

The final keyword in the editor DEF file is PROTMODE. This line indicates
that the program. is a 32-bit pr?te~ted mode application. Since very few people are
developing 16-bit OS/2 applications, the keyword is generally included in all
cases, certainly in all DEF files for this book.

The basic editor program initially requires two header files; they will be
used, ~though ~ expanded form, throughout the entire development process for
our editor. The first of these is RC.HPP, as shown in Figure 8-2.

11--------------------
11 Window Identifiers \
11---
#define ID MAIN 1 II ID of main window

11------------------------------
11 Main Window Menu Identifiers \
11---
11--------------------------------
II Main Window Button Identifiers \
11---
11----------------------
II Resource Identifiers\
11---
Listing 8·2 RC.HPP

Currently, this header defines only a single item, ID_MAIN, which is the
identifier for our main editor window. You will notice some other comment blocks
in this file as well. These will be populated as we begin to enhance our editor.

Listing 8-3 shows the second header file. EDITOR.HPP is the header defin
ing the window object for the main window. This class is pretty barren at the
moment, containing only a constructor and destructor, but we will add to it as we
go along. In the completed editor this file contains many additional class methods
and attributes.

CODING THE EDITOR 329

330

11---------------
11 C_WINDOW_MAIN \
11---
11 Derived from: C_W.JNDOW_STD

II
class C_WINDOW_MAIN : public C_WINDOW_STD
{

};

public:
C WINDOW MAIN(void);
-C_WINDOW_MAIN(void);

11------------------------------
11 User defined window messages\

11---

Listing 8·3 EDITOR.H PP

Now let's take a look at the main program. EDITOR.CPP is also quite short

at the moment, defining only three functions. It includes the constructor code for

C_ WINOOW _MAIN, which identifies the message table used by our main win

dow to the parent C_ WINOOW _STD object.
A destructor method is also provided. Currently, it has nothing to do, but it

will have a very important function in later versions of our code.

11-------------------
11 OSl2 Conditionals \

11---
#define INCL DOS
#define INCL WIN

11------------------
11 Standard Headers \

11---
#include <os2.h>
#include <stdio.h>
#include <string.h>
#include <process.h>

11-----------------
11 NVCLASS Headers \

11---
#include <thread.hpp>
#include <threadpm.hpp>
#include <semev.hpp>

AN IMPROVED EDITOR I CHAPTER 8

11-----------------
11 PMCLASS Headers \

11---
#include <app.hpp>
#include <window.hpp>
#include <winstd.hpp>
#include <winchild.hpp>
#include <status.hpp>
#include <button.hpp>
#include <tbar.hpp>
#include <mle.hpp>

11---------------------
11 Application Headers \

1/---
#include "rc.hpp
#include <editor.hpp>

11-------------
11 Global Data\

11---
C_APPLICATION xcApp;
C_WINDOW_MAIN xcWindow;

11---------------------------
11 Main Window Message Table \

11---
DECLARE_MSG_TABLE(xtEditorMain)

DECLARE_MSG(WM_PAINT, C_WINDOW_STD::MsgPaint)
END_MSG_TABLE

11-------------
11 Constructor \

11---
C_WINDOW_MAIN: :C_WINDOW_MAIN(void) : C_WINDOW_STD(xtEditorMain)
{
}

11-------------
11 Destructor \

11---
C_WINDOW_MAIN::-C_WINDOW_MAIN(void)
{
}

void main(void)
{

II Register and create a new program window
xcWindow.Register("ImprovedEditor");

CODING THE EDITOR ,331

332

II Set the window characteristics
xcWindow.WCF SizingBorder();
xcWindow.WCF-SysMenu();
xcWindow.WCF-TaskList();
xcWindow.WCF-ShellPosition();
xcWindow.WCF-MinButton();
xcWindow.WCF-MaxButton();
xcWindow.WCF=TitleBar();

II Create the window
xcWi ndow .Create (ID_ MAIN, "Improved System Editor") ;
xcWindow.Show();

II Start the message loop
xcApp. Run() ;

Listing 8-4 EDITOR.CPP

We took a brief look an a main() function similar to this one in the
PMCLASS "Hello World" program. This code first registers our new window with
the operating system, then defines the initial characteristics of the window. For
example, this window has sizable borders, and some embellishments including a
system menu, minimize and maximize buttons, as well as a title bar. Any instances
of this window are given an initial size and position, as defined by Presentation
Manager, and any instances of this window will appear in the WPS task list. Next,
the window is created and displayed on the WPS desktop.

The final step in our main procedure is a call to xcApp.Run() to start a mes-
sage loop for the editor so it can begin executing. The resulting output is similar to
the "Hello World" example, so we need not review it here.

Handling Window Creation

The first thing we need to do is create a message handler that will get called when
ever the main editor window is created. This will be used later to initialize our
window object's attributes and set up any child objects that our applications need.

There are a few lines of code that we will need to insert into some of the
existing source files. First of all, we need to add a new entry into the message table
to mate the PM_ CREATE message to our new MsgCreate() method. Edit the EDI
TOR.CPP file, adding in the message table:

DECLARE_MSG(PM_CREATE, C_WINDOW_MAIN::MsgCreate)

We then need to implement the new method. In EDITOR.HPP, add the fol
lowing line to the public section of the class:

void *MsgCreate(void *mpl, void *mp2);

AN IMPROVED EDITOR I CHAPTER 8

Finally, add the following new method code to EDITOR.CPP, as follows:

11-----------
11 MsgCreate \
11---11 Event: PM CREATE
II Cause: Issued by OS when window is created
II Description:Thi~ ~e~ho~ gets called when the window is initially created.
11. * It 1n1t1al1zes all of the visual aspects of the class.
void C_WINDOW_MAIN::MsgCreate(void *mpl, void *mp2)
{

return FALSE;

For now, ~e M~gCreate function does not add any additional functionality.
It does have a single line of code forcing a return value of FALSE. Window mes
sage handler methods must return a value, and the usual value is FALSE.

You can recompile the application with these new additions, but you would
~ot observe any appreciable difference from the base executable. In the next sec
tion we'll change that.

Adding Status Bar Objects

<:>ne of the distinctions we will make in our editor, as compared with E, is the addi
ti~n of ~o~e user feedback on the current states of things. The best way to accom
plish thi~ is to create a status bar where our application can display key pieces of
information for us.

Our e~anced editor will actually implement two status bars because there
are a f~w things that we want to display simultaneously, and we want to avoid
confus~g the user .by jumblin~ this information on a single status line.

Smee we will be changing the characteristics of the C WINDOW MAIN
class, we first need to tell it about the new status bar attribut;s. In EDITOR HPP
add the following lines: ·

private:
C_STATUS
C_STATUS

*pxcTopStatus;
*pxcBottomStatus;

II Pointer to top status bar
II Pointer to the bottom status bar

In ~e MsgCreate() method in EDITOR.CPP, add the following lines to
create new mstances of the status objects:

II Create the status bars to display miscellaneous data
pxcTopStatus = (C_STATUS *) new C_STATUS(this);
pxcBottomStatus = (C_STATUS *) new C_STATUS(this);

ADDING STATUS BAR OBJECTS 333

334

Finally, because the objects are created ~yna~cally'. we need to ensure that
the memory they use is deallocated if the mam wmdow IS destroyed. To accom
plish this, add the following lines to the C_ WINDOW _MAIN destructor method:

II Free up the dynamic memory used for status bars
delete pxcTopStatus;
delete pxcBottomStatus;

The status bars are now in place and will get created when the main win
dow is opened. If you run this code, however, you will still not n~tice any positiv.e
change to program output. Why? There are a couple of reasons. Frrst of all~ the cli
ent area of our window is the same color as the status bars, so the status lines are
essentially invisible. Second, both status bars are at exactly th~ same position in the
window and are the same size, so even in a best case scenario we would only be
able to see one of them.

Don't panic yet, we will start sizing things once we get all the controls cre-
ated. We still do not have an edit window in place, so we cannot perform any text
editing. This is the next step.

Adding a Multiline Editor Object

So far our editor program is useless. We can display a main window, bu~ ~e ca~ot
actually edit anything because we have not yet implemented a multiline editor
object. The steps to accomplishing this are similar to those taken to create status
bars. All we need to do is add a few more lines of code.

Again, we need to update the class definitio.n si~ce v-:e will b~ adding~ new
attribute. Edit EDITOR.HPP and insert the following line m the private section of
the class.

C MLE *pxcMLE; II Pointer to the editor object

Now edit EDITOR.CPP and, in the MsgCreate() method, insert:

II Create a new multi line editor control
pxcMLE = (C_MLE *)new C_MLE(this, ID MAIN_MLE);

This line creates a new dynamic instance of an MLE. Like the status line
object, we need to ensure that this object's memory is returned to the heap before
the window is closed. So, in the destructor for C_WINDOW_MAIN, we need to
add the following code:

II Free up the multiline editor object
delete pxcMLE;

AN IMPROVED EDITOR I CHAPTER 8

One final item we need to address is the new definition made for the MLE
creation line. Every control needs to have a distinct identifier, and in the case of
pxcMLE we have introduced ID_MAIN_MLE, which we have to define some
where in the code. We will do this in RC.HPP immediately after the ID_MAIN def
inition.

#define ID MAIN MLE2 II ID of the MLE object

Sizing Up

In spite of the fact that most of our objects have been created, the program still
does not operate correctly. If you run the updated executable you will notice a very
small object in the lower comer of the client area possessing a vertical and horizon
tal scrollbar. This is actually the MLE we just created. But what good is it?

When the MLE was created it was assigned default size and position values
by the PMCLASS code. These values are not acceptable; we have to resize the con
trol in order to make it suitable for use. What we really want is to have our status
bars span the width of the main window and sit at the top and bottom of the client
area, and we want our MLE control to extend to the remainder of the client area.
When the user moves or resizes the main window all the controls should scale
with it. How can we achieve this?

Fortunately, Presentation Manager can help our application out by telling it
exactly when the user has resized the main frame window. PM sends our applica
tion a WM_SIZE message, and all we need to do is intercept this message and size
the status bars and MLE control.

Since we are going to watch for a new window message, we need to repeat
the steps we took to add the MsgCreate() method. In EDITOR.HPP we will add a
new method prototype to the public section of the class.

void *MsgSize(void *mpl, void *mp2);

Then, in EDITOR.CPP, we can add a new entry into the message table.

DECLARE_MSG(WM_SIZE,C_WINDOW_MAIN::MsgSize)

Finally, we need to create the new method to handle window sizing. In EDI
TOR.CPP, add the following method code.

11---------
11 MsgSize \
11---11 Event: WM SIZE
II Cause: Issued by OS when window is resized
II Description:This method is called any time PM decides the window needs

SIZING UP 335

336

II to be resized. It determines the new window dimensions and

II resizes the visual components accordingly.

II
void *C_WINDOW_MAIN::MsgSize(void *mpl, void *mp2)

{
int iCX;
int iCY;

II Determine the new size of the client area

C_WINDOW::GetSize(&iCX, &iCY);

II Stretch the top status across the entire window

iCY -= 20;
pxcTopStatus->SetSizePosition(0, iCY, iCX, 20);

II Make the container window use whatever space is left minus the height

II of the second status bar
pxcMLE->SetSizePosition(0, 20, iCX, iCY - 20);

II Draw the final status bar in the lower region of the window

pxcBottomStatus->SetSizePosition(0, 0, iCX, 20);

return FALSE;

Believe it or not, a large portion of our editor is now completed. Recompile

the application and run the executable and you will see what I mean. Notice that

the upper and lower status bars are in place and sandwich the large MLE window.

Using the mouse, click the left mouse button while the pointer is within the

boundaries of the MLE window. You can type text and select text with the mouse.

If you know the shortcut keys for copying and cutting text, you can interact with

the clipboard.

Adding a Menu

So far, our enhanced editor still lacks some significant features that prevent it from

being a serious competitor to E. For example, there is no way to save or load text

and only an inconvenient method by which we can use the clipboard features.

What we need to create is a menu from which program operations can be selected.

This is accomplished by creating a resource script.

A resource script is a text file that can be used to add resources to a pro

gram's EXE file. These resources can take the form of binary items, such as icons,

mouse pointers, and bitmaps. Menu templates and keyboard accelerators are usu

ally also implemented in the resource file (RC). You can build all of these things

with code if you wish, but an RC file saves hours of coding work.

AN IMPROVED EDITOR I CHAPTER 8

dor ll~c~ the RC file is completed, you use a tool supplied by the compiler ven-

~; t ~ Reso~ce Compiler, which compiles the script into a binary file with

a · extension. This RES file is bound to the EXE file by the linker You will h

to make sure this RC fil t .1 d · ave
. . . . e ge s comp1 e and linked into the program executable

Sm~e this.is compiler spe?fic, I have not shown the project or MAKE files for thi~

en:e kJect. I am assummg you have some experience with these but if not look

a! e · al pro~ec~ or ~ file for this program on the companion disk. I~ will

give you some ms1ght mto what is required.

The following listing contains the initial RC file for our enhanced editor.

#include <os2.h>
#include "rc.hpp"

MENU ID_MAIN
BEGIN

SUBMENU "-File", DM_FILE
BEGIN

MENUITEM "-New ... ", OM FILE NEW
MENUITEM "-Open ... ", OM FILE OPEN
MENUITEM SEPARATOR - -

MENUITEM "-Save ... ", DM FILE SAVE
MENUITEM "Save -as ... ",-DM FILE SAVEAS

END - -

SUBMENU "-Edit", DM EDIT
BEGIN -

END

MENUITEM "-Undo\aAlt+Backspace", DM_EDIT_UNDO
MENUITEM SEPARATOR
MENUITEM "Cu-t\aShift+Del ", DM EDIT CUT

MENUITEM "-Copy\aCtrl+Ins", OM-EDIT-PASTE

MENUITEM "-Paste\aShift+Ins", OM EDIT PASTE

MENUITEM "Cl-ear\aDel ", DM EDIT CLEAR-
MENUITEM SEPARATOR - -

MENUITEM "-Find ... \aCtrl+F", DM EDIT FIND

MENU ITEM "Select -all", DM_EDIT)ELECT

SUBMENU "-Options", DM_OPTIONS
BEGIN

END

SUBMENU "-Word wrap", OM OPTIONS WRAP
BEGIN - -

MENU ITEM "--On", DM OPTIONS WRAP ON
MENU ITEM "0-ff". DM OPTIONS WRAP OFF

END - - -

SUBMENU "-Help", DM HELP

ADDING A MENU 337

338

BEGIN
MENUITEM "Help -index ... ", DM HELP INDEX
MENUITEM "-General help ... ", DM_HELP_GENERAL
MENUITEM "-Using help ... ", DM_HELP_USING
MENU ITEM "-Keys help ... ", OM_ HELP _KEYS
MENUITEM SEPARATOR
MENUITEM "-Product information . .. ", DM HELP INFO

END
END

ACCELTABLE ID_MAIN PRELOAD MOVEABLE
BEGIN

VK_BACKSPACE,
VK_DELETE,
VK_INSERT,
VK_INSERT,
VK_DELETE,

END

DM _EDIT_ UNDO,
DM_EDIT_CUT,
DM _EDIT_ COPY,
DM_EDIT_PASTE,
DM_EDIT_CLEAR,

DM_EDIT_FIND,

Listing 8·5 EDITOR.RC

VIRTUALKEY, ALT
VIRTUALKEY, SHIFT
VIRTUALKEY, CONTROL
VIRTUALKEY, SHIFT
VIRTUALKEY

CHAR, CONTROL

In Listing 8-5, a menu had been created, as well as an accelerator table for
the menu. You will note that this menu is remarkably similar to one in E (actually,
I patterned this menu after E's). You will notice that I have dropped the fo~t and
color selection items from the "Options." I did this because we are not gomg to
require them for our completed editor. Our application will be WPS-compliant, so
it will support drag-and-drop changes from the system palettes.

All of the menu options in the RC had an associated identifier which must
be defined. The RC includes our RC.HPP for this reason, and we will define these
identifiers there. Add the following to the "Main Window Menu Identifiers" sec-
tion of RC.HPP.

#define DM FILE 100
#define DM FILE NEW 101
#define DM FILE OPEN 102
#define DM FILE SAVE 103
#define DM FILE SAVEAS 104
#define DM EDIT 200
#define DM EDIT UNDO 201
#define DM EDIT CUT 202
#define DM EDIT COPY 203
#define DM EDIT PASTE 204
#define DM EDIT CLEAR 205
#define DM EDIT FIND 206
#define DM EDIT SELECT 207
#define DM OPTIONS 300

AN IMPROVED EDITOR I CHAPTER 8

#define DM_OPTIONS_WRAP 301
#define DM_OPTIONS_WRAP_ON 302
#define DM_OPTIONS_WRAP_OFF 303
#define DM HELP 400
#define DM_HELP_INDEX 401
#define DM _HELP_ GENERAL 402
#define DM_HELP_USING 403
#define DM_HELP_KEYS 404
#define DM_HELP_INFO 405

Finally, we need to tell the main window that it now has a menu to load
wh~n it gets ~stantiated. This is a simple matter of adding the following line to the
mam() function of EDITOR.CPP. Add this to the end of the characteristics imple
mented previously.

xcWindow.WCF_Menu();

Now, if ~ou compi~e ~n~ run the program, you'll start to see something that
actually looks like E. It still isn t very functional, though. We'll start adding some
"meat" to the program soon.

Adding a Toolbar

The ~al user interface issue ~e need to a~dress is the toolbar. Toolbars are easy to
~reate, however, they can be ~e~con~urrm_1g· If you are like me (or any other typ
~cal progr~~er)~ you lack artistic skills. Smee you will be building lots of button
i1:1ages, this is an rmportant consideration. The button faces (for the up, down, and
disabled states) ~eed to .be designed and implemented using ICONEDIT, a stan
dard OS/2 tool. I ll provide the button graphics for this program so all you need
to do is implement a little code. '

Firs~, we n.eed to .create the toolbar object. Listing 8-6 contains the TBAR
TOP.HPP file, which defines the new toolbar object.

class C TOOLBAR TOP public C_TOOLBAR
{ -

public :
C_TOOLBAR_TOP(C_WINDOW *pxcParentObj, C_STATUS *pxcStatus);
void Control(ULONG mpl);

};

II Main Toolbar Identifier
#define D _TOP_ TBAR 50

II Main Toolbar button IDs
#define DB OPEN 100
#define DB - SAVE 101

ADDING A TOOLBAR 339

340

#define
#define
#define
#define

DB CUT
DB COPY
DB PASTE
DB FIND

Listing 8·6 TBARTOP.HPP

102
103
104
105

The TBARTOP.CPP file is shown in Listing 8-7.

//-------------------
// OS/2 Conditionals \

1/---
#define INCL_DOS
#define INCL_WIN
#define INCL_GPI

//------------------
//Standard Headers\

--------------------//--
#include <os2.h>
#include <stdio.h>
#include <stdlib.h>

//-----------------
// PMCLASS Headers \

1/---
#include <app.hpp>
#include <window.hpp>
#include <winstd.hpp>
#include <winchild.hpp>
#include <status.hpp>
#include <button.hpp>
#include <tbar.hpp>

//---------------------
//Application Headers \

1/---
#include <tbartop.hpp>
#include "rc.hpp"

//-------------
//Constructor \

11---
c TOOLBAR TOP::C TOOLBAR TOP(C_WINDOW *pxcParentObj, C_STATUS *pxcStatus)

- - - - : C_TOOLBAR(pxcParentObj, D_TOP_TBAR, 40)

DECLARE BUTTON TABLE(xtButtons }
DECLARE_BUTTON(DB_OPEN, DB_OPEN_UP, DB_OPEN_DN, 0,

AN IMPROVED EDITOR I CHAPTER 8

"Open a file", 8, 4)
DECLARE_BUTTON(DB_SAVE, DB SAVE UP, DB SAVE DN, 0,

"Save a-file", 40, 4 } -
DECLARE_BUTTON(DB_CUT, DB_CUT_UP, DB_CUT_DN, 0,

"Cut selected text", 80, 4)
DECLARE_BUTTON(DB_COPY, DB_COPY_UP, DB_COPY_DN, 0,

"Copy selected text", 112, 4}
DECLARE_BUTTON(DB_PASTE, DB_PASTE_UP, DB_PASTE_DN, 0,

"Paste text from the clipboard", 144, 4)
DECLARE_BUTTON(DB FIND, DB FIND UP, DB FIND ON, 0,

"Display the text search/replace dialog", 184, 4)
END_BUTTON_TABLE

II Set the status bar object used by the toolbar
Status(pxcStatus);

II Add some toolbar buttons
CreateButtons(xtButtons);

//--------
// Control \

11---
void C_TOOLBAR_TOP::Control(ULONG mpl)
{

// Button-Collll!and cross reference
DECLARE_BUTTON_CMD_TABLE(xtCollll!andLookup }

DECLARE BUTTON CMD(DB OPEN, DM FILE OPEN }
DECLARE-BUTTON-CMD(DB-SAVE, OM-FILE-SAVE)
DECLARE-BUTTON-CMD(DB-CUT, DM EDIT CUT)

DECLARE=BUTTON=CMD(DB=COPY, DM_EDIT_COPY)
DECLARE BUTTON CMD(DB PASTE, OM EDIT PASTE)
DECLARE-BUTTON-CMD(DB-FIND, DM EDIT FIND)

END_BUTTON_CMD_TABLE - - -

//Call the parent controller to process the items
C_TOOLBAR::Control(mpl, xtCollll!andLookup);

Listing 8·7 TBARTOP.CPP

To the private section of C_ WINDOW _MAIN in EDITOR.HPP, add:

C_TOOLBAR_TOP *pxcTBar; // Pointer to toolbar object

Add the following code to the "Main Window Button Identifiers" section in
RC.HPP:

ADDING A TOOLBAR
341

342

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

DB OPEN UP
DB-OPEN-ON
DB-SAVE-UP
DB-SAVE-ON
DB-CUT UP
DB-CUT-ON
DB-COPY UP
DB-COPY-ON
DB-PASTE UP
DB)AST(DN
DB FIND UP
DB)IND)N

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011

To EDITOR.RC, add the new pointer resources.

POINTER
POINTER
POINTER
POINTER
POINTER
POINTER
POINTER
POINTER
POINTER
POINTER
POINTER
POINTER

DB OPEN UP
o(OPE(DN
DB SAVE UP
o(sAv(oN
DB_COPY_UP
DB_COPY_DN
DB_CUT_UP
DB_CUT_DN
DB_PASTE_UP
DB_PASTE_DN
DB_FIND_UP
DB_FIND_DN

".lbuttonslloadup.ptr"
".lbuttonslloaddn .ptr"
".lbuttonslsaveup.ptr"
".lbuttonslsavedn.ptr"
".lbuttonslcopyup.ptr"
".lbuttonslcopydn.ptr"
".lbuttonslcutup.ptr"
".lbuttonslcutdn.ptr"
".lbuttonslpasteup.ptr"
".lbuttonslpastedn.ptr"
".lbuttonslsrchup.ptr"
".lbuttonslsrchdn.ptr"

In EDITOR.CPP, there are a number of changes to make. ~irst we ne~d to
include the toolbar class definition, by adding a new hea~er file t? our hst of
includes. Add the following line immediately after the line that mcludes the

RC.HPP header file.

#include <tbartop.hpp>

To the c WINDOW _MAIN destructor, add the following lines in. order t.o
ensure that the- toolbar memory is returned to the heap when the wmdow is

destroyed.

II Free up the toolbar object
delete pxcTBar;

To create the toolbar, add the following lines to the MsgCreate() method.

II Create a toolbar control)
pxcTBar = (C_TOOLBAR_TOP *)new C_TOOLBAR_TOP(this, pxcTopStatus ;

AN IMPROVED EDITOR I CHAPTER 8

In order to ensure that the toolbar is displayed and correctly resized when
the main window size is changed, we need to add a bit of code. To accomplish this,
some source needs to be added to the MsgSize() method. Immediately after the call
to C_WINDOW::QuerySize(), add the following lines.

II Stretch the toolbar across the entire window
iCY -= 40;
pxcTBar->SetSizePosition(o, iCY, iCX, 40);

An important aspect of toolbars is that they are controls, and as such, gen
erate a WM_ CONTROL message that the owner window must intercept and pro
cess. To do this, we need to add a new message processor method for
WM_ CONTROL.

To EDITOR.HPP, add a new method prototype to the public section of the
class, as follows:

void *MsgControl (void *mpl, void *mp2);

Then add the new message to the message table in EDITOR.CPP.

DECLARE_MSG(WM_CONTROL,C_WINDOW_MAIN::MsgControl)

Finally, add a method to process the WM_ CONTROL messages. This
method detects messages from the toolbar buttons and tells the toolbar object to
convert these to WM_ COMMAND messages by calling the Control() method.

11------------
11 MsgControl \
11---
11 Event: WM_CONTROL
II Cause: Issued by OS for control functions (Toolbar interaction)
II
void *C_WINDOW_MAIN::MsgControl(void *mpl, void *mp2)
{

switch(SHORTlFROMMP(mpl))
{

case D TOP TBAR:
pxcTBar->Control((ULONG)mpl);
break;

return FALSE;

You can now add TBARTOP.CPP to your project or MAKE file and rebuild
the executable. Run the program and you will see the toolbar immediately below
the program menu. You can position the mouse over a button to see the fly-over

ADDING A TOOLBAR 343

344

text appear in the top status bar and you can click buttons to observe t:he change 1:11

appearance. The toolbar is now fully active, as are all of the menu options. What 1s

missing are the command processors for each of these items. In !11e remainder of

this chapter, we will begin adding these items to complete the editor.

Processing WM_COMMAND Messages

I will warn you now that this section contains a lot of code. So far we have not pro

cessed any menu or toolbar button operations, and without this capability our edi

tor will never be useful. In this section we will add the capability to process all of

the window commands.
We are going to create a dummy method for each option on the main menu.

The result is a lot of empty code, but this is necessary for us to proceed with imple

menting the code for the options.
The first thing we will need to do is create a command table and tell the

PMCLASS engine about it, so it knows where the method for each command mes

sage is located. The command table is virtually identical to the message.table we

have been using in this application. In EDITOR.CPP, add the following table

immediately following the message table at the top of the file.

//---------------------------
//Main Window Conmand Table \

1/---
DECLARE COMMAND TABLE(xtCommandMain)

DECLARE COMMAND(DM FILE NEW,
DECLARE-COMMAND(OM-FILE-OPEN,
DECLARE-COMMAND(OM-FILE-SAVE,
DECLARE-COMMAND(DM-FILE-SAVEAS,
DECLARE-COMMAND(OM-EDIT-UNDO,
DECLARE-COMMAND(OM-EDIT-CUT,
DECLARE-COMMAND(OM-EDIT-COPY,
DECLARE-COMMAND(OM-EDIT-PASTE,
DECLARE-COMMAND(OM-EDIT-CLEAR,
DECLARE-COMMAND(OM-EDIT-FIND,
DECLARE-COMMAND(OM-EDIT-SELECT,
DECLARE-COMMAND(OM-OPTIONS WRAP ON,
DECLARE-COMMAND(OM-OPTIONS-WRAP-OFF,
DECLARE-COMMAND(OM-HELP INDEX, -
DECLARE-COMMAND(OM-HELP-GENERAL,
DECLARE-COMMAND(OM-HELP-USING,
DECLARE-COMMAND(OM-HELP-KEYS,

DECLARE=COMMAND(DM=HELP=INFO,
END MSG TABLE

C WINDOW MAIN::CmdFileNew)
C-WINDOW-MAIN::CmdFileOpen)
C-WINDOW-MAIN::CmdFileSave)
C-WINDOW-MAIN::CmdFileSaveAs
C-WINDOW-MAIN::CmdEditUndo)
C-WINDOW-MAIN::CmdEditCut)
C-WINDOW-MAIN::CmdEditCopy)
C-WINDOW-MAIN::CmdEditPaste)
C-WINDOW-MAIN::CmdEditClear)
C-WINDOW-MAIN::CmdEditFind)
C-WINDOW-MAIN::CmdEditSelect)
C-WINDOW-MAIN::CmdOptionsWrapOn
C-WINDOW-MAIN::CmdOptionsWrapOff)
C-WINDOW-MAIN::CmdHelpindex)
C-WINDOW-MAIN::CmdHelpGeneral
C-WINDOW-MAIN::CmdHelpUsing)
C-WINDOW-MAIN::CmdHelpKeys)
C=WINDOW=MAIN::CmdHelpinfo)

AN IMPROVED EDITOR I CHAPTER 8

We have to let the parent window of C_ WINDOW _MAIN know that we are

now going to process our own command messages, so to the constructor add the

following lines.

//Enable the required command handlers for this window

ConmandTable(xtConmandMain);

For each entry in the command table we need to create a command method

This why I warned you that there would be lots of code. At present, each of thes~

m~thod~ will be e~pty, returning only a FALSE value to the window manager. We

will begm populating these items in the next section.

//------------
/I CmdFil eNew \

11---// Event: OM FILE NEW

II Cause: User selects the File/New menu option

II
void *C_WINDOW_MAIN::CmdFileNew(void *mpl, void *mp2)
{

return FALSE;

//-------------
// CmdFileOpen \

//---// Event: OM FILE OPEN

II Cause: User selects the File/Open menu option
II
void *C_WINDOW_MAIN:_:CmdFileOpen(void *mpl, void *mp2)
{

return FALSE;

//-------------
// CmdFileSave \

//--- -
// Event: DM FILE SAVE --- ------------------

//Cause: User selects the File/Save menu option
II
void *C_WINDOW_MAIN::CmdFileSave(void *mpl, void *mp2)
{

return FALSE;

PROCESSING WM_COMMAND MESSAGES 345

346

//---------------
// CmdFileSaveAs \
//---
//Event: OM_FILE_SAVEAS
//Cause: User selects the File/SaveAs menu option

II void *C_WINOOW_MAIN::CmdFileSaveAs(void *mpl, void *mp2)
{

return FALSE;

//-------------
// CmdEditUndo \
//---
//Event: OM_EOIT_UNOO
// Cause: User selects the Edit/Undo menu option

II void *C_WINOOW_MAIN::CmdEditUndo(void *mpl, void *mp2)
{

return FALSE;

//------------
// CmdEditCut \
//---
// Event: OM_EOIT_CUT
//Cause: User selects the Edit/Cut menu option

II
void *C_WINDOW_MAIN::CmdEditCut(void *mpl, void *mp2)
{

return FALSE;
}

//-------------
// CmdEditCopy \
//---
//Event: DM_EOIT_COPY
//Cause: User selects the Edit/Copy menu option

// void *C_WINOOW_MAIN::CmdEditCopy(void *mpl, void *mp2)
{

return FALSE;
}

//-------------
// CmdEditPaste \
//---
//Event: OM EOIT_PASTE
//Cause: User selects the Edit/Paste menu option

AN IMPROVED EDITOR I CHAPTER 8

II
void *C_WINOOW_MAIN::CmdEditPaste(void *mpl, void *mp2)
{

return FALSE;

//--------------
// CmdEditClear \
//--//Event: OM EDIT CLEAR ---------------------

//Cause: User selects the Edit/Clear menu option
II
void *C_WINOOW_MAIN::CmdEditClear(void *mpl, void *mp2)
{

return FALSE;

//-------------
// CmdEditFind \
//---//Event: OM EDIT FIND ------
//Cause: User selects the Edit/Find menu option
II
void *C_WINDOW_MAIN::CmdEditFind(void *mpl, void *mp2)
{

return FALSE;

//---------------
// CmdEditSelect \
//---------------------//Event: OM EDIT~~~~~;--

//Cause: User selects the Edit/Select menu option
II
~oid *C_WINDOW_MAIN::CmdEditSelect(void *mpl, void *mp2)

return FALSE;
}

//------------------
// CmdOptionsWrapOn \
//---// Event: OM EDIT WRAP ON ---------- ----------------

//Cause: User selects-the Options/Wrap/On menu option
II
~oid *C_WINDOW_MAIN::CmdOptionsWrapOn(void *mpl, void *mp2)

return FALSE;

PROCESSING WM_COMMAND MESSAGES 347

//-------------------
// CmdOptionsWrapOff \
/!---
// Event: DM_EDIT_WRAP_OFF .
//cause: User selects the Options/Wrap/Off menu option

II
void *C_WINDOW_MAIN::CmdOptionsWrapOff(void *mpl, void *mp2
{

return FALSE;

/!--------------
// CmdHelpindex \
/!---
/! Event: DM_HELP_INDEX
//Cause: User selects the Help/Index menu option

II
void *C_WINDOW_MAIN::CmdHelpindex(void *mpl, void *mp2)
{

return FALSE;

//----------------
// CmdHelpGeneral \
//---
// Event: DM_HELP_General
//Cause: User selects the Help/General menu option

II
void *C_WINDOW_MAIN::CmdHelpGeneral(void *mpl, void *mp2
{

return FALSE;

/!--------------
/! CmdHelpUsing \
/!---
// Event: DM_HELP_USING
//Cause: User selects the Help/Using menu option

II
void *C_WINDOW_MAIN::CmdHelpUsing(void *mpl, void *mp2
{

return FALSE;

/!-------------
// CmdHelpKeys \
!!---
/!Event: DM_HELP_KEYS

348 AN IMPROVED EDITOR I CHAPTER 8

//Cause: User selects the Help/Keys menu option
II
void *C_WINDOW_MAIN::CmdHelpKeys(void *mpl, void *mp2)
{

return FALSE;

!!-------------
// CmdHelpinfo \
!!---
/!Event: DM_HELP_INFO
//Cause: User selects the Help/Index menu option
II
void *C_WINDOW_MAIN::CmdHelplnfo(void *mpl, void *mp2)
{

return FALSE;

Finally, prototype the new methods in EDITOR.HPP by adding the follow
ing lines to the public section of the class.

//Command Processor Methods
void *CmdFileNew(void *mpl, void *mp2);
void *CmdFileOpen(void *mpl, void *mp2);
void *CmdFileSave(void *mpl, void *mp2);
void *CmdFileSaveAs(void *mpl, void *mp2);
void *CmdEditUndo(void *mpl, void *mp2);
void *CmdEditCut(void *mpl, void *mp2);
void *CmdEditCopy(void *mpl, void *mp2);
void *CmdEditPaste(void *mpl, void *mp2);
void *CmdEditClear(void *mpl, void *mp2);
void *CmdEditFind(void *mpl, void *mp2);
void *CmdEditSelect(void *mpl, void *mp2);
void *CmdOptionsWrapOn(void *mpl, void *mp2);
void *CmdOptionsWrapOff(void *mpl, void *mp2);
void *CmdHelplndex(void *mpl, void *mp2);
void *CmdHelpGeneral(void *mpl, void *mp2);
void *CmdHelpUsing(void *mpl, void *mp2);
void *CmdHelpKeys(void *mpl, void *mp2);
void *CmdHelplnfo(void *mpl, void *mp2);

From this point on, we will take much bigger steps. You should be feeling
quite comfortable with the PMCLASS library now, so in the next section I will
introduce the NVCLASS, as we start to create threads for loading and saving files.

PROCESSING WM_COMMAND MESSAGES 349

350

Loading and Saving Files
Although our enhanced editor program now looks like a complete program, it still
lacks the ability to save or load files. In this section we will add this capability, and
although I will introduce you to the thread handling provided by the NVCLASS
library, the complexity of the code will not increase significantly.

Add the following new attributes to the EDITOR.HPP file, in the private
section of the class. These lines prepare for setting up additional threads to load
and save the file and specify the file name on which the editor will be working.

C THREAD PM - -
C THREAD PM -
char

xcLoadThread;
xcSaveThread;
szFile[512];

//Pointer to a PM aware thread
//Pointer to a PM aware thread
//String containing current file

Also, in preparation for multithreading, we need to create a few inline
methods to permit access to some of the C_ WINDOW _MAIN class's attributes. To
the public section of the class definition add:

// Inline methods
C STATUS *BottomStatus(void)
C-MLE *MLE(void)
char *File(void)

return pxcBottomStatus; };
return pxcMLE; };
return szFile; };

Now we will create the two thread functions we need to perform the saving
and loading operations. When describing the MLE saving and loading processes
earlier in this book, I pointed out that these operations should always occur on a
separate thread simply because they can take significantly longer than the 1110 sec
ond that PM programming style guidelines recommend.

Add the following two thread functions to EDITOR.CPP immediately after

the command table near the top of the program.

/!----------------
// FileLoadThread \
1/---
void _Optlink FileLoadThread(void *pvData)
{

C WINDOW MAIN - -
C THREAD PM - -

*pxcThis;
*pxcThread;

//Get a point to the main window object
pxcThread = (C_THREAD_PM *)pvData;
pxcThis = (C_WINDOW_MAIN *)pxcThread->ThreadData();

//Create a PM process for this thread
pxcThread->InitializeThread{);

// Load the multiline editor with the article file

AN IMPROVED EDITOR I CHAPTER 8

pxcThis->MLE()->Load{ pxcThis->BottomStatus(), pxcThis->File());

//Terminate the thread
pxcThread->TerminateThread{);

/!----------------
!/ FileSaveThread \
//------------------------void _Optlink FileSaveThre~~(-:~~~-:~:~~~~-)---------------------------------

{
C WINDOW MAIN
(THREAD-PM

*pxcThis;
*pxcThread;

//Get a point to the main window object
pxcTh~ead = (C_THREAD_PM *)pvData;
pxcTh1s = (C_WINDOW_MAIN *)pxcThread->ThreadData();

//Create a PM process for this thread
pxcThread->InitializeThread{);

// Lo~d the multi line editor with the article file
pxcThis->MLE()->Save(pxcThis->BottomStatus(), pxcThis->File());

//Terminate the thread
pxcThread->TerminateThread{);

.
1

:tice in ~e ~hread functions that the action part of the code is really just a
smdg e e, as I said ma previous chapter. The rest of the thread code J·ust sets up
an tears down the thread.
. Somehow we now need to start these threads; the way to do this is by add
:~ code to three of ~he command handlers created in the last section. First we will

code t~ loa~ a file. The PMCLASS library does not currently offer an object to
prese~t a file dia~og, which is a drawback, but we can use this opportunity to
examme how t~ mtegrate true PM API code into a program written with the
classes. You can imp~ement file dialog classes later, if you wish.

To the CmdFileOpen() method in EDITOR.CPP, add the followin lines
b~fore the re~u~n statement. This code creates and displays a standard 0~/2 file
dialog, permitting the user to select a file for loading Assuming the us th
selects the dialog's OK button, the selected file is saved in the szFile class a:.ib ~n
and the load thread is started. u e

FILEDLG
HWND

fild;
hDlgWnd;

//Use the OS/2 AP! to query the user for a file

LOADING AND SAVING FILES 351

352

memset(&fild, 0, sizeof(FILEDLG));
fild.cbSize = sizeof(FILEDLG);
fild.fl = FDS_CENTER I FDS_OPEN_DIALOG;
fild.pszTitle = "Open file";
strcpy(fild.szFullFile, "*.*");
hDlgWnd = WinFileDlg(HWND DESKTOP, Window(), &fild);
if(hDlgWnd && (fild.lRet~rn == DID_OK))
{

II Get the filename we're supposed to load
strcpy(szFile, fild.szFullFile);

II Begin a thread to load the file
xcLoadThread.Create(FileloadThread, 40000, this);

The code for the CmdFileSave() method is much simpler. The editor already
knows the name of the file, so it does not have to query the user again. Instead, it
can simply start the save thread, as shown in the following lines.

II Begin a thread to Save the file
xcLoadThread.Create(FileSaveThread, 40000, this);

The CmdFileSaveAs() method is similar to the loading function. By select
ing this operation, the user has elected to save the file under a different name, so
once again the editor needs to display a standard file dialog to permit the user to
set the file name. The SaveAs code is shown below.

FILEDLG
HWND

fild;
hDlgWnd;

II Use the OSl2 API to query the user for a file
memset(&fild, 0, sizeof(FILEDLG));
fild.cbSize = sizeof(FILEDLG);
fild.fl = FDS_CENTER I FDS_SAVEAS_DIALOG;
fild.pszTitle = "Save file as";
strcpy(fild.szFullFile, "*.*");
hDlgWnd = WinFileDlg(HWND DESKTOP, Window(), &fild);
if(hDlgWnd && (fild.lRet~rn == DID_OK))
{

II Get the filename we're supposed to load
strcpy(szFile, fild.szFullFile);

II Begin a thread to load the file
xcSaveThread.Create(FileSaveThread, 40000, this);

AN IMPROVED EDITOR I CHAPTER 8

. If you c~mpile. and run the editor executable now, you will see that it works.
You c~ ~oad files, e~t th~m, and save them back to disk. All that remains to mimic
th~ ~xisting E functionality is to implement the Edit menu options. We will start
this m the next section.

Adding Clipboard Interaction and Word Wrap

Looking back at the chapter describing the PMCLASS MLE code, we are reminded
tha_t the ~-MLE class that is used in the editor already has the capability of inter
acting _with ~e OS/2 clipboard. All we really need to do, then, is associate these
operations with a specific command handler method.

For e_xample, to implement the "undo" operation, add the following lines to
the CmdEditUndo() method.

II Undo the last editor operation
pxcMLE->Undo ();

The remainder of the editor functions are similar in implementation To
CmdEditCut(), add: ·

II Remove the selected text and place it on the clipboard
pxcMLE->Cut();

To CmdEditCopy(), add:

II Copy the selected text and place it on the clipboard
pxcMLE->Copy();

To CmdEditPaste(), add:

II Paste the contents of the clipboard into the file
pxcMLE->Paste();

To CmdEditClear(), add:

II Clear the current selection
pxcMLE->Clear();

And, finally, to CmdEditSelectAll(), add the following lines:

II Select all data in the MLE
pxcMLE->Select(0 , pxcMLE->BufferLength());

ADDING CUPBOARD INTERACTION AND WORD WRAP 353

354

We might as well implement the word wrap options in this section as well,

since they are similar to the clipboard operations. To tum word wrap on, the pro

gram calls CmdOptionsWrapOn()-its code follows.

II Enable word wrapping
pxcMLE->WordWrap(TRUE);

To toggle wrapping off, add the following lines to CmdOptionsWrapOff().

II Disable word wrapping
pxcMLE->WordWrap(FALSE);

I have deliberately ignored the Find menu option because it involves rather

more complex code. If we want to mimic E's text searching, then we will need to

create a dialog box to manage this operation. We will examine the use of dialogs

next, starting with the Product Information dialog shown in the following section.

Loading Dialogs

We know that to polish an application we should create a product information

window or About box. This is a window, usually created in the resource script,

that displays some important data about an application. Since the product infor

mation dialog is probably the least complex of all dialogs, we will start by imple

menting it within our enhanced editor.

First, we need to use a dialog editor to create a new window that will have

the finished appearance shown in Figure 8-2. I have elected to create a very rudi

mentary dialog for this application. I could have easily added graphics to the win

dow or a copy of the program icon, but for now let's keep it simple.

13 J , di I /n;, . 111 1: t ••

Enhanced $yltem Edltw

CGp!1191 (c) 1 !195 lly Stew en Gutz

versian 1.811

Ok]

Figure 8·2 Enhanced editor product information dialog

To create this dialog, add this text to the end of the EDITOR.RC file:

DLGTEMPLATE ID PROD INFO
BEGIN

DIALOG "Product Information", 100, 17, 40, 292, 87, WS VISIBLE,
FCF_SYSMENU I FCF_TITLEBAR

AN IMPROVED EDITOR I CHAPTER 8

BEGIN

END
END

DEFPUSHBUTTON "OK", DID_OK, 121, 4, 51, 14

CONTROL "Enhanced System Editor", 101, 4, 65, 283, 8, WC STATIC, SS TEXT I

11
DT_CENTER I DT_TOP I DT_MNEMONIC I ws_vISIBLE 1-ws GROUP -

CONTROL Copyright (c) 1995 by Steven Gutz", 102, 4, 55, 283, 8, WC STATIC,

II SS_T~XT I DT_CENTER I DT_TOP I DT_MNEMONIC I WS_VISIBLE I ws GROUP

CONTROL Vers1on 1.00", 103, 4, 31, 283, 8, WC_STATIC, SS TEXT j OT CENTER I
DT_TOP I DT_MNEMONIC I WS_VISIBLE I WS_GROUP - -

. The ID_PROJ?-~FO identifier also needs to be defined. Add the following

line to_ the RC.HPP file m the same location as the other window identifiers previ

ously mserted.

#define ID_PROD_INF03ll ID of product information dialog

. In order to invoke a resource from the executable, we need to associate it

w~th a class of some sort. Fortunately, PMCLASS offers the C_DIALOG class. From

this we can derive a new object specifically designed to handle the product infor

mation dialog. This new class C_DIALOG_ABOUT is defined in PRODINFO.HPP

shown in Listing 8-8. The C++ source file appears in Listing 8-9. '

11----------------
11 C DIALOG ABOUT\ 11--: ______ : __ _

II Derived from: C DIALOG
II -
class C DIALOG ABOUT public C_DIALOG
{ - -

public:
C_DIALOG_ABOUT::C_DIALOG_ABOUT(C_WINDOW *pxcParentObj, int iID);

II Message processors
void* MsgCreate(void *mpl, void *mp2);

II Corranand Processors

};
void* CmdOK(void *mpl, void *mp2);

Listing 8-8 PRODINFO.HPP

11-------------------
11 OSl2 Conditionals \

11---
#define INCL DOS
#define INCL-WIN

LOADING DIALOGS 355

356

11------------------
11 Standard Headers \

11---

#include <os2.h>
#include <stdio.h>

11-----------------
11 PMCLASS Headers \

11---

#include <app.hpp>
#include <window.hpp>
#include <winstd.hpp>
#include <winchild.hpp>
#include <dialog.hpp>
#include <edit.hpp>
#include <status.hpp>
#include <button.hpp>
#include <tbar.hpp>
#include <mle.hpp>
#include <log.hpp>

11---------------------
// Application Headers\

1/--

#include "rc.hpp"
#include <prodinfo.hpp>

//---------------------------
/!Main Window Message Table\

1/--

DECLARE MSG TABLE(xtEditorProdinfo)

DECLARE_MSG(PM_CREATE, C_DIALOG_ABOUT::MsgCreate)

END_MSG_TABLE

//----------------------------
//About Window Coll1lland Table\

/1---

DECLARE COMMAND TABLE(xtColl1llandAbout)

DECLARE_COMMAND(DM_OK,C_DIALOG_ABOUT::CmdOK)

END_COMMAND_TABLE

11-------------
11 Constructor\

11---

c DIALOG ABOUT::C DIALOG ABOUT(C WINDOW *pxcParentObj, int iID)

- - - : -C_DIALOG(pxcParentObj, xtEditorProdinfo)

//Enable the required handlers for this window

AN IMPROVED EDITOR I CHAPTER 8

CommandTable(xtColl1llandAbout);

II Create the physical dialog
Create(i ID) ;

//Begin processing the about box
Process();

//-----------
// MsgCreate \

1/--

1/ Event: PM CREATE

//Cause: Issued by OS when window is created

II Description:This method gets called when the window is initially created.

//
void *C_DIALOG_ABOUT::MsgCreate(void *mpl, void *mp2)
{

DosBeep(100, 100);

return FALSE;

//-------
11 CmdOK \

/!--

// Event: DM OK

II Cause: User selects the OK button-

//
void *C_DIALOG_ABOUT::CmdOK(void *mpl, void *mp2)
{

//Close this dialog
Close(FALSE};

return FALSE;

Listing 8-9 PRODINFO.CPP

In EDITOR.CPP we need to add some additional code to invoke the dialog

when the user selects the product information menu option. The method that

manages this option is CmdHelplnfo(); to that method, add the following lines to

create the About Box.

II Create an instance of the about dialog

C_DIALOG_ABOUT xcAbout(this, IO_PROD_INFO);

LOADING DIALOGS 357

358

Flftd: I U
~~~~~

~~~~~
-·

Change I« ,.--,.,._~;i;:~:;===---,,:,-=~=~t'

cnesen111111e

Find I f change, then And I n Change AU I I CWal

As you can see from Listing 8-9, a dialog box from a resource file is pro

cessed almost identically with any other window object. Message tables and com

mand tables are still used and the format of the handler methods is exactly the

same. Contrast this to the normal OSl2 AP!, which has subtle differences in the

way dialogs are managed that make it confusing to new programmers.

Search and Replace

Although the enhanced editor can now manipulate files, and is actually quite an

effective editor, it still lacks the ability to search for text strings, and is also missing

the capability of replacing one string of text with another. In this section we will

implement a new dialog box and some code to implement this feature. This dialog

is shown in Figure 8-3.

Figure 8-3 Find text dialog box

The first step in the process is to create this dialog in resource script lan

guage. Edit EDITOR.RC, adding the following script.

DLGTEMPLATE ID FIND DIALOG

BEGIN
DIALOG "Find Text", 100, 24, 52, 292, 77, WS_VISIBLE, FCF_SYSMENU FCF TITLEBAR

BEGIN
PUSHBUTTON "Cancel", DID_CANCEL, 231, 9, 51, 12

CONTROL "Find:", 101, 4, 62, 58, 8, WC STATIC, SS TEXT I DT RIGHT I DT_TOP I

DT_MNEMONIC I WS~VISIBLE I WS_GROUP -

CONTROL'"', 102, 71, 62, 213, 9, WC ENTRYFIELD, ES LEFT I ES AUTOSCROLL I

ES MARGIN I WS-VISIBLE I ws GROUP I ws TABSTOP

CONTROL "Change to:", 103, 4, 48, 5B, 8, WC_STATic, SS_TEXT-1 DT_RIGHT I

DT TOP I DT MNEMONIC I WS VISIBLE I WS GROUP

CONTROL 1111
, 104, 71, 48~ 213, 9, -WC ENTRYFIELD~ ES LEFT I ES AUTOSCROLL I

ES MARGIN I WS-VISIBLE I ws GROUP I ws TABSTOP

CONTROL "Case Sensitive'~ 105, 107, °28, 96, 10, WC BUTTON, BS AUTOCHECKBOX

WS_VISIBLE I WS_GROUP I WS_TABSTOP -

CONTROL "Find", 106, 11, 9, 57, 12, WC_BUTTON, BS_PUSHBUTTON I WS_VISIBLE

WS_GROUP I WS_TABSTOP

CONTROL "Change All", 108, 168, 9, 57, 12, WC_BUTTON, BS_PUSHBUTTON

WS_VISIBLE I WS_GROUP I WS_TABSTOP

AN IMPROVED EDITOR I CHAPTER 8

CONTROL "Change, th F' d
en in ", 107, 74, 9, 89, 12, WC BUTTON, BS_PUSHBUTTON I

WS_VISIBLE I WS_GROUP I WS_TABSTOP
END

END

Now edit the RC.HPP file, adding the new window definition.

#define ID_FIND_DIALOG4 II ID of the Find dialog

h
~so add definitions for all the new controls introduced by this dial

s own m the following segment.
og, as

#define DM_CANCEL 2
#define DM_FIND 106
#define DM CHANGE FIND 107
#define D(CHANGE-ALL 108
#define DC_CASE_SENSITIVE 105
#define DE_FIND_TEXT 102
#define DE_ CHANGE_ TEXT 104

C DIA~~~~~e ~ill need to creat~ a new s?urce file to support this new object

- . - . · . o accompany this, we will also create a new header file to

define the c~ass. Listing 8-10 shows the new header file, and Listin 8-11 shows th

accom~anymg C++ source for the C_DIALOG_FIND class. I will ~ot be detailin e

these files because they are just a rehash of things we h Ir d g

"t . th ave a ea y seen The one

new I em ~s e reference to ParentObject(). This is a method, which ev~ child

~!:: th:o~::i~~)~at returns a pointer to the owner object (i.e., the object t~at ere-

11---------------
11 C DIALOG FIND\
11--: ______ : _______________________________ _

II Derived from: C DIALOG ---------------------------------

11 -
~lass C_DIALOG_FIND public C_DIALOG

private:
C _WINDOW_ STD *pxcParent; II Pointer to owner window

public:

C_DIALOG_FIND::C_DIALOG_FIND(C_WINDOW *pxcParentObj, int iID);

II Message processors

void * MsgCreate(void *mpl, void *mp2);

II Convnand Processors

void * CmdFind(void *mpl, void *mp2);

SEARCH AND REPLACE 359

360

};

void *
void *
void *

CmdChangeFind(void *mpl, void *mp2);
CmdChangeAll(void *mpl, void *mp2);
CmdCancel(void *mpl, void *mp2);

Listing 8-10 FINDDLG.HPP

11-------------------
11 OSl2 Conditionals\ ------------------------------------11---------------------------------------

INCL DOS
INCL WIN

#define
#define

11------------------
11 Standard Headers \ -------------------------
11--
#include <os2.h>
#include <stdio.h>
#include <string.h>
#include <process.h>

11-----------------
11 NVCLASS Headers\ -------------------------
11--
#include <thread.hpp>
#include <threadpm.hpp>
#include <semev.hpp>

11-----------------
11 PMCLASS Headers\ ------------------------11---
#include <app.hpp>
#include <window.hpp>
#include <winstd.hpp>
#include <winchild.hpp>
#include <dialog.hpp>
#include <edit.hpp>
#include <status.hpp>
#include <button.hpp>
#include <tbar.hpp>
#include <mle.hpp>
#include <log.hpp>

11---------------------
11 Application Headers\
11---
#include "rc.hpp"
#include <tbartop.hpp>

AN IMPROVED EDITOR I CHAPTER 8

#include <finddlg.hpp>
· #include <editor.hpp>

11---------------------------
11 Main Window Message Table\
11---
DECLARE_MSG_TABLE(xtEditorFind)

DECLARE_MSG(PM_CREATE, C_DIALOG_FIND::MsgCreate)
END MSG TABLE

11----------------------------
11 About Window Command Table\
11---
DECLARE_COMMAND_TABLE(xtCommandFind)

DECLARE_COMMAND(DM_FIND,
DECLARE COMMAND(DM CHANGE FIND,
DECLARE-COMMAND(OM-CHANGE-ALL,
DECLARE=COMMAND(DM=CANCEL~

END COMMAND TABLE - -

11-------------
11 Constructor\

C_DIALOG_FIND::CmdFind)
C_DIALOG_FIND::CmdChangeFind)
C_DIALOG_FIND::CmdChangeAll)
C_DIALOG_FIND::CmdCancel)

11---
C_DIALOG_FIND::C_DIALOG_FIND(C_WINDOW *pxcParentObj, int iID)

: C_DIALOG(pxcParentObj, xtEditorFind)

II Enable the required handlers for this window
CorrmandTable(xtCommandFind);

II Create the physical dialog
Create(i ID) ;

II Begin processing the dialog box
Process();

11-----------
11 MsgCreate \
11---
11 Event: PM CREATE
II Cause: Issued by OS when window is created
II Description:This method gets called when the window is initially created.
II It initializes all of the visual aspects of the class.
void *C_DIALOG_FIND::MsgCreate(void *mpl, void *mp2)
{

C EDIT *pxcEdit;

II Get the find text

SEARCH AND REPLACE 361

362

pxcEdit = (C_EDIT *} new C_EDIT((C_DIALOG *}this, DE_FIND_TEXT);

WinSetFocus(HWND_DESKTOP, pxcEdit->Window() };

II Dispose of the edit field object
de 1 ete pxcEdit;

return (void *)TRUE;

11---------
11 CmdFind \
11---
11 Event: DM_FIND
II Cause: User selects the Find button

II void *C_DIALOG_FIND::CmdFind(void *mpl, void *mp2)

{
char
C EDIT
int

szStri ng [256];
*pxcFind;
iCase;

II Determine the case sensitivity flag
iCase = (int)WinSendDlgitemMsg(Window(), DC CASE SENSITIVE,

- BM QUERYCHECK, 0, 0);

ParentObject()->SendMsg(PM_FIND_SET_CASE, (void *);Case, 0);

II Get the find text
pxcFind = (C_EDIT *} new C_EDIT((C_DIALOG *}this, DE_FIND_TEXT);

II Send a message to our parent telling it to find the next instance

II of this text
pxcFind->GetText(szString, 256);
ParentObject(}->SendMsg(PM_FIND, (void *}szString, 0 };

II Dispose of the edit field object
delete pxcFind;

return FALSE;

11---------------
11 CmdChangeFind \
11---
11 Event: DM _CHANGE _FIND 11 II Cause: User selects the "Change then Find button

II void *C_DIALOG_FIND::CmdChangeFind(void *mpl, void *mp2)

AN IMPROVED EDITOR I CHAPTER 8

char
char
C EDIT
C EDIT
int

szChange [256] ;
szStri ng [256];
*pxcFind;
*pxcChange;
iCase;

!I Determ~ne the case sensitivity flag
1Case = (1nt)WinSendDlgitemMsg(Window(), DC_CASE_SENSITIVE,

BM QUERYCHECK, 0, 0);
ParentObject()->SendMsg(PM_FIND_SET_CASE, (void *}iCase, O);

II Get the find text
pxcFind = (C_EDIT *} new C_EDIT((C_DIALOG *}this, DE_FIND_TEXT);
pxcChange = (C_EDIT *} new C_EDIT((C_DIALOG *}this, DE_CHANGE_TEXT);

II S~nd a message to our parent telling it to change then find
pxcF1nd->GetText(szString, 256);
pxcChange->GetText(szChange, 256 };
ParentObject()->SendMsg(PM CHANGE FIND

(void *}szStrin~, (void *}szChange);

II Dispose of the edit field objects
delete pxcFind;
delete pxcChange;

return FALSE;

11-----------
11 CmdChange \
11--11 Event: DM CHANGE ALL -----
II Cause: User selects the ChangeAll button
II
void *C_DIALOG_FIND::CmdChangeAll (void *mpl, void *mp2
{

char szChange[256];
char szString[256];
C EDIT *pxcFind;
C EDIT *pxcChange;
int iCase;

II Determine the case sensitivity flag
iCase = (int)WinSendDlgitemMsg(Window(), DC CASE SENSITIVE - - .

BM QUERYCHECK, 0, 0)·
ParentObject()->SendMsg(PM_FIND_SET_CASE, (void *);Case, O); '

SEARCH AND REPLACE 363

364

II Get the find text
pxcFind = (C_EDIT *} new C_EDIT((C_DIALOG *}this, DE_FIND_TEXT);
pxcChange = (C_EDIT *} new C_EDIT((C_DIALOG *}this, DE_CHANGE_TEXT };

II Send a message to our parent telling it to change all
pxcFind->GetText(szString, 256 };
pxcChange->GetText(szChange, 256);
ParentObject(}->SendMsg(PM_CHANGE_ALL,

(void *}szString, (void *}szChange);

II Dispose of the edit field objects
delete pxcFind;
delete pxcChange;

return FALSE;

11-----------
11 CmdCancel \
11---
11 Event: DM_CANCEL
II Cause: User selects the Cancel button

II
void *C_DIALOG_FIND::CmdCancel(void *mpl, void *mp2)
{

II Close this dialog
Close(FALSE) ;

return FALSE;

Listing 8·11 FINDDLG.CPP

The C_DIALOG_FIND object communicates with C_WINOOW_MAIN,
and it is this parent that actually performs most of the work associated with the
searching and replacing of text strings. To implement this, a number of changes to
the existing source need to be performed.

To EDITOR.HPP, add the following lines to the public section of the class.

void *MsgFindSetCase(void *mpl, void *mp2);
void *MsgFind(void *mpl, void *mp2);
void *MsgChangeFind(void *mpl, void *mp2);
void *MsgChangeAll (void *mpl, void *mp2);

In the class definition we have also introduced a new attribute to keep track
of the case sensitivity of any searches that are performed. To the private section of
the class, add the line:

AN IMPROVED EDITOR I CHAPTER 8

int · c s i ase ensitive; II Set if searches are to be cased

th f llTh~n, in EDIT<?R.CPP, add new entries into the message table, as shown in
e o owmg code sruppet.

DECLARE MSG(PM FIND
DECLARE=MSG(PM=FIND~SET_CASE,
DECLARE MSG(PM CHANGE FIND
DECLARE-MSG(PM-CHANGE-ALL ' - - - ,

C_WINDOW_MAIN::MsgFind)
C_WINDOW_MAIN::MsgFindSetCase)
C_WINDOW_MAIN::MsgChangeFind)
C_WINDOW_MAIN::MsgChangeAll)

This naturally mandates the definition of methods for these new messages.
These are shown as follows:

11---------
11 MsgFind \
11-----------------------11 Event: PM FIND --

11 Cause: . Is~ued by the Find dialog when a find is required
II Descr1pt1on:Th1s method searches the MLE from the current cursor location
II_ * for the string supplied in mpl.
void C_WINDOW_MAIN::MsgFind{ void *mpl, void *mp2)
{

char *szFind;

II Get the find string passed to us
szFind = (char *)mpl;

pxcMLE->FindFromCursor(szFind, iCaseSensitive);

return FALSE;

11----------------
11 MsgFindSetCase \
11---11 Event: PM FIND SET CASE ----------------------------

11 Cause: . Is~ued by the Find dialog to set case sensitivity flag
II Descr1pt1on:~h1s method accepts a value in mpl which is used to determine
11 . * 1f case sensitivity is used for searches and replacements.
~01d C_WINDOW_MAIN::MsgFindSetCase(void *mpl, void *mp2)

II Determine the case sensitivity flag
if(mpl)

iCaseSensitive = l;
else

iCaseSensitive = O;

return FALSE;

SEARCH AND REPLACE 365

366

11---------------
11 MsgChangeFind \ ----------------------------------11---
11 Event: PM CHANGE FIND . 11 • • d c . Issued by-the Find dialog when a "change then find is require
~J o:~~~iption:This method changes the current selection to the string
II pointed to by mp2, then sea~ches the_MLE _from the current
II cursor location for the string sup~lied in mpl.
void *C_WINDOW_MAIN::MsgChangeFind(void *mpl, void *mp2)
{

char *szFind;
char *szChange;

II Get the find and change strings string passed to us
szFind = (char *)mpl;
szChange = (char *)mp2;

pxcMLE->Insert(szChange);
pxcMLE->FindFromCursor(szFind, iCaseSensitive);

return FALSE;
)

11--------------
11 MsgChangeAll \ ----------------------11---
11 Event: PM CHANGE ALL

11 • • II cause: Issued by-the Find dialog when a "change all is req~ired
II Description :This method changes ~ll inst~nces of ML~ text, m~tch~ng
II the string supplied in mpl with t~e string supplied in mp2.
void *C_WINDOW_MAIN::MsgChangeAll(void *mpl, void *mp2)
{

char
char

*szFind;
*szChange;

II Get the find and change strings string passed to us
szFind = (char *)mpl;
szChange = (char *)mp2;

pxcMLE->ChangeAll(szFind, szChange, iCaseSensitive);

return FALSE;

After placing the FILEDLG.CPP file in your project or MAKE file and
rebuilding the application, you should be able to run the exec~tab~e and_ sea~c~ fo;
text and/ or replace text. Although there is quite a lot of code m this _section, it 1sn t
that complex and, since by now you should be quite an expert with PMCLASS,
you should be able to negotiate it easily.

AN IMPROVED EDITOR I CHAPTER 8

Final Embellishments

A number of features can be added to the enhanced editor. For example, code is
required to detect changes in the editor text and to warn the user if an attempt is
made to exit without saving the file. Titis code should automatically call the Save
or SaveAs methods as required to make sure the file is saved automatically.

Most editors, including E, display the file name of the file being edited in
the application title bar so users know what is active. Titis is coded in the final
enhanced editor, which can be found on the companion disk.

Other important aspects of the code that have not been detailed thus far are
the ability to save and restore color and font changes, and to preserve the size and
position of the editor window between sessions. The program has supported drag
and-drop changes from the start; however, any changes have not been perma
nently stored. To accomplish this, INI file support must be implemented. On pro
gram start the INI file should be referenced to obtain the appropriate values, and
at exit these values should be saved back to the INI file. The final editor code
implements this capability.

Another useful feature that you will not see in E is a display of the current
line count or the column number for the cursor. In the final version of the
enhanced editor, I have implemented an attempt at this by intercepting the
WM_ CHAR messages sent to the main window. These messages are issued by PM
each time a key is pressed in the Multiline Edit control. The limitation of this code
in its current form is its inability to update the lower status line when the mouse is
clicked. If you click to a location in the editor, the line/ column display will not get
updated until you press a key. Titis isn't a big limitation, but it is something of
which you should be aware. Feel free to dig into the code to correct this limitation.

These missing features are implemented in the final version of the
enhanced editor executable. If you are interested in figuring out what has been
done in the final version, take a look at the source code on the companion disk.

Chapter Summary

In this chapter, we have implemented a complete editor program offering several
features not found in the standard OS/2 editor, E. You should now have a more
complete understanding of the logic that has been implemented in the class librar
ies from Part II of this book.

We have, for the most part, covered everything you need to know to write
complete and effective applications using PMCLASS and NVCLASS. In the final
chapters, we will begin implementing applications using the experience gained by
creating the enhanced editor. As you will see, introduction of TCP/IP networking
classes does not necessarily complicate the design of a program. You will find that
the network applications in following chapters are only slightly more complicated
than what you have already seen and implemented in the enhanced editor.

FINAL EMBELLISHMENTS 367

In this chapter

./ Implementing a simple Ping application

./ Integrating Ping with a PM application

Ping Main Program

A Simple PM Pin

The best place to start programming for TCP/IP is probably a simple Ping pro

gram. The concepts of Ping are easier to understand and the user interface code

should be shorter than for any of the other programs we will build in this book.

Though I have elected not to implement help for the Ping program, the help

menu does provide a "product information" option that is implemented in order

display an information box. The program also implements a second dialog box

used to input new server information. This code creates a window with an edit

control, so you can learn how to interact with the C_EDIT class from the

PM CLASS visual class library. The enhanced editor shown in the previous chapter

used this object, but I did not go into much detail about it there. We will take a

more comprehensive look at it here.

The PING.CPP source, shown in Listing 9-1, is the main start-up code for

the Ping program; there are several additional modules that are also shown in their

entirety. I will discuss individual routines and global data after each listing, if

appropriate, in order to point out any technical issues that might be of interest in

understanding the flow of the program.

!!-------------------
// OS/2 Conditionals \

1/---

#define INCL DOS
#define INCL WIN

368

!/------------------
// Standard Headers \

//------------------------------------
#include <os2.h> ---------------------------------------

#include <stdio.h>
#include <string.h>
#include <process.h>

//-----------------
// PMCLASS Headers \

//-----------------------------
#include <app.hpp> --

#include <window.hpp>
#include <winstd.hpp>

#include <winchild.hpp>
#include <dialog.hpp>
#include <edit.hpp>
#include <status.hpp>
#include <button.hpp>
#include <tbar.hpp>
#include <mle.hpp>
#include <contain.hpp>
#include <log.hpp>

//-----------------
// NVCLASS Headers \

//---
#include <thread.hpp> ------------------------------

#include <threadpm.hpp>

//------------------
// NETCLASS Headers \

//-----------------------------------
#include <net.hpp> --

#include <netping.hpp>

//---------------------
//Application Headers \

//-------------------------------
#include "ping.rch" --

#include "tbartop.hpp"

#include "address.hpp"

#include "about.hpp"
#include "ping.hpp"

PING MAIN PROGRAM 369

370

11-------------
11 Global Data \

11---

c APPLICATION xcApp;
C=WINDOW_MAIN xcWindow;

11---------------------------
11 Main Window Message Table \

11---

DECLARE_MSG_TABLE(xtMsgMain)
DECLARE MSG(PM CREATE,
DECLARE-MSG(PM-DONE,
DECLARE=MSG(WM=CLOSE,
DECLARE MSG(WM DESTROY,
DECLARE-MSG(WM-SIZE,
DECLARE=MSG(WM=CONTROL,
DECLARE_MSG(WM_PAINT,

END MSG TABLE

11---------------------------
11 Main Window Command Table \

C WINDOW MAIN::MsgCreate)
C-WINDOW-MAIN::MsgDone)
C-WINDOW-MAIN::MsgClose)
C-WINDOW-MAIN::MsgDestroy)
C-WINDOW-MAIN::MsgSize)
C-WINDOW-MAIN::MsgControl

C=WINDOW=STD::MsgPaint)

11---

DECLARE COMMAND TABLE(xtCommandMain)

DECLARE COMMAND(DM EXIT,
DECLARE-COMMAND(OM-CONNECT,

DECLARE=COMMAND(DM=INFO,

C WINDOW MAIN::CmdExit)
C-WINDOW-MAIN::CmdConnect)

C=WINDOW=MAIN::CmdHelpinfo)

END MSG TABLE

11------------
11 PingThread \

11---

void _Optlink PingThread(void *pvData)

{
char
BYTE
int
C WINDOW MAIN - -
C THREAD PM - -

szSt ring (256] ;
byPacket (100];

iResult;
*pxcThis;
*pxcThread;

II Get a pointer to the main window object

pxcThread = (C THREAD PM *)pvData;

pxcThis = (C_WINDOW_MAIN *)pxcThread->ThreadData();

II Create a PM process for this thread

pxcThread->InitializeThread();

II Create an instance of a Ping networking object

C_CONNECT_PING xcPingPort(1, pxcThis->ServerAddress());

A SIMPLE PM PING I CHAPTER 9

II Open the Ping channel

~Res~lt = xcPingPort.C_CONNECT_PING::Open();
if(iResult == D NET OK)
{ - -

II Loop until the user stops this thread
while(!pxcThis->ExitFlag())
{

II Transmit a Ping to the other end of the connection

memset(byPacket, Oxff, 100);

~Result= xcPingPort.PingTx(byPacket, 64);

if(iResult == D NET OK)
{ - -

II Receive the Ping results
memset(byPacket, Oxff, 100);
strcpy(szString, "") ;

xcPingPort.PingRx(byPacket, szString);

II Print the Ping results to the MLE
if(strlen(szString))
{

strcat(szString, "\r\n");
pxcThis->MLE()->Insert(szString);

II Sleep for a second before we ping again
DosSleep(1000);

else
{

II Tell the user that something is amiss

WinMessageBox(HWND_DESKTOP, pxcThis->Window(),

"PING transmission error - aborting", D APPNAME,

0, MB_OK I MB_ICONHAND);

II Force the window to close
pxcThis->ExitFlag(1);

II Close the Ping port
xcPingPort.Close();

else
{

II Tell the user that we couldn't find the selected host

WinMessageBox(HWND_DESKTOP, pxcThis->Window()

"Couldn't Open PING socket", D APPNAME, o,'
MB_OK I MB_ICONHAND);

PING MAIN PROGRAM 371

372

II Tenninate the thread
pxcThread->TenninateThread();

11-------------
11 Constructor\

11---

c WINDOW MAIN::C WINDOW MAIN(void) : C WINDOW STD(xtMsgMain)

{
- - - - - -

II Enable the required handlers for this window

CormnandTable(xtCommandMain);

11-----------
11 MsgCreate \

11---

11 Event: WM_CREATE
II Cause: Issued by OS when window is created

II
void *C_WINDOW_MAIN::MsgCreate(void *mpl, void *mp2)

{
II Create a status bar to display miscellaneous data

xcStatus = (C_STATUS *) new C_STATUS(this);

II Create a toolbar control
xcTBar = (C_TOOLBAR_TOP *)new C_TOOLBAR_TOP(this, xcStatus);

II Create a container control
xcMLE = (C_MLE *)new C_MLE(this, D_ID_MLE);

II Set the color and font for the container

xcMLE->SetFont("Helv", 10);

xcMLE->SetForegroundColor(255, 255, 255);

xcMLE->SetBackgroundColor(0, 0, 128);

II Initialize the instance attributes

iMustExit = 0;
strcpy(szServerAddress, "");

II Make the window visible
Show();

return FALSE;
}

11----------
11 MsgClose \

11---

11 Event: WM_CLOSE

A SIMPLE PM PING I CHAPTER 9

II Cause: Issued by OS when window is closed
. II

void *C_WINDOW_MAIN::MsgClose(void *mpl, void *mp2)
{

II Application was told to close, so post a QUIT message to the OS

PostMsg(WM_QUIT, 0, 0);
return FALSE;

11------------
11 MsgDestroy \
11----------
11 Event: ---~;~~;;;;;;--

11 Cause: Issued by OS when window is destroyed

II
void *C_WINDOW_MAIN::MsgDestroy(void *mpl, void *mp2)
{

II Get rid of the dynamic memory we allocated
delete xcStatus;
delete xcTBar;

return FALSE;

11---------
11 MsgSize \

11---11 Event: WM-SIZE ------------------------

11 Cause: Issued by OS when window is resized

II
void *C_WINDOW_MAIN::MsgSize(void *mpl, void *mp2
{

int iCX;
int iCY;

II Detennine the size of the client area

C_WINOOW::GetSize(&iCX, &iCY);

II Stretch the toolbar and status windows so they use the entire window

iCY -= 40;
~cTBar->SetSizePosition(0, iCY, iCX, 40);
iCY -= 25;
xcStatus->SetSizePosition(O, iCY, iCX, 25);

II Make the MLE take up the remainder of the client area space

xcMLE->SetSizePosition(0, 0, iCX, iCY);

return FALSE;

PING MAIN PROGRAM 373

374

11------------
11 MsgControl \
11---
1 I Event: WM_ CONTROL . . II Cause: Issued by OS for control functions (Toolbar interaction)

II void *C_WINDOW_MAIN::MsgControl(void *mpl, void *mp2)

{
switch(SHORTlFROMMP(mpl))
{

case D TOP TBAR:
xcTBar:>Control((ULONG)mpl);
break;

return FALSE;

11---------
11 MsgDone \
11---
11 Event: PM_DONE . II Cause: Issued by the connection dialog when a new connection
II has been selected. Also issued by main() if user specifies
II a co1T111and line address.
void *C_WINDOW_MAIN::MsgDone(void *mpl, void *mp2)
{

char szString(256];

II Format the window title correctly
xcStatus->Text("Pinging %s", (char *)mpl);

II Get the selected server from the caller
strcpy(szServerAddress, (char *)mpl);

II Terminate the existing thread if it is running
iMustExit = 1;
xcPingThread.Waitindefinite();

iMustExit = O;

sprintf(szString, "\r\nPinging %s\r\n", szServerAddress);
xcMLE->Insert(szString);

II Begin a thread to Ping servers
xcPingThread.Create(PingThread, 40000, this);

return FALSE;

A SIMPLE PM PING I CHAPTER 9

11---------
11 CmdExit \
11---11 Event: DM EXIT ----------------------------

1/ Cause: User selects the exit menu option
II
void *C_WINDOW_MAIN::CmdExit(void *mpl, void *mp2)
{

II If the user picks "Exit" from the main menu, close the program
SendMsg(WM_CLOSE, 0, 0);
return FALSE;

11------------
11 CmdConnect \
11---11 Event: DM CONNECT ----------------------------

11 Cause: User selects the connect option or toolbar button
II
void *C_WINDOW_MAIN::CmdConnect(void *mpl, void *mp2
{

II Create an instance of the address dialog
C_DIALOG_ADDRESS xcAddress(this, D_DIALOG_ADDRESS);

II Tell the window who its parent is so it can talk back
xcAddress.SendMsg(PM_PARENT, this, O);

II Process the dialog
xcAddress.Process();

return FALSE;

11-------------
11 CmdHelplnfo \

jj-;~~~;~------~~-;~;~---
11 Cause: User selects the Product Information menu option
II
void *C_WINDOW_MAIN::CmdHelpinfo(void *mpl, void *mp2)
{

II Create an instance of the about dialog
C_DIALOG_ABOUT xcAbout(this, D_DIALOG_ABOUT);
return FALSE;

void main(int iArgCount, char *szArgV(])
{

PING MAIN PROGRAM 375

376

II Register the application window

xcWindow.Register("Ping");

II Create a new program window

xcWindow.WCF_Standard();
xcWindow.Create(ID_WINDOW, "Ping - Control Panel");

II Process any command line arguments

if(iArgCount > 1)
{

II Pass in the command-line argument

xcWindow.PostMsg(PM_DONE, szArgV[l], 0);

II Start the message loop
xcApp.Run();

Listing 9·1 PING.CPP

The first thing I should mention is the global variable list defined for this

program. I really dislike the use of excessive global data so I make extreme

attempts to avoid it. You will discover, however, that building a Presentation Man

ager program that is free of global variables is all but impossible. All message and

command tables defined in Ping are global, but they are constant. We never

change them, so there really are not much of a concern in global memory space.

There are two globally instantiated classes in Ping, as shown below.

C APPLICATION
C WINDOW MAIN - -

xcApp;
xcWindow;

The first is an instance of the application class. All of the programs in this

part of the book will create an instance of C_APPLICATION which, as we dis

cussed in Part II, looks after getting the Presentation Manager engine up and run

ning, and also manages the termination of the program when the user exits.

The second global class is actually an instance of the main window. We

didn't really need to make this class global, but it does simplify the code to do so.

The C ++ language provides excellent protection of data, so we do not need to con

cern ourselves too much with a globally defined class. However, always be aware

of possible data conflicts if there is any possibility that two separate threads might

attempt access to the same data from any global area.

Near the top of the PING.CPP file, you will see two odd-looking table defi

nitions. The first table is a list of messages and their equivalent parser methods. As

we discussed earlier, each window class must provide a parser method for each

message it cares about; this is done by defining a message table like the one shown

below. Large, uncontrollable window procedures are avoided and the code

becomes clearer. In the case of the Ping window, seven window messages are inter

cepted.

A SIMPLE PM PING I CHAPTER 9

DECLARE_MSG_TABLE(xtMsgMain)

DECLARE MSG(PM CREATE
DECLARE-MSG(PM-DONE '

DECLARE=MSG(WM=CLOSE,
DECLARE_MSG(WM_DESTROY,
DECLARE MSG(WM SIZE
DECLARE-MSG(WM-CONT~OL
DECLARE-MSG(WM-PAINT '

END_MSG_TABLE - '

C_WINDOW_MAIN::MsgCreate)
C_WINDOW_MAIN::MsgDone)
C_WINDOW_MAIN::MsgClose)
C_WINDOW_MAIN::MsgDestroy)
C_WINDOW_MAIN::MsgSize)
C_WINDOW_MAIN::MsgControl)
C_WINDOW_STD::MsgPaint)

The second table contains a listing of all the command

about Command
messages we care

or tooibar button ;::::~e;;;e ~~se ~essage~ that are sent from menu selections

commands it can · ce .mg is ~ery srmple, there are only three possible

send, and we will provide a processor for each of them.

DECLARE_COMMAND_TABLE(xtCommandMain)

DECLARE_COMMAND(DM_EXIT, C_WINDOW MAIN::CmdExit)

DECLARE_COMMAND(DM_CONNECT, C WINDOW-MAIN::CmdConnect)

DECLARE COMMAND(DM INFO - -
END_MSG_TABLE - ' C_WINDOW_MAIN::CmdHelpinfo)

Now let's take a look at the main() routine:

~oid main(int iArgCount, char *szArgV[]

II Register the application window

xcWindow.Register("Ping");

II Create a new program window
xcWindow.WCF_Standard();

xcWindow.Create(ID_WINDOW, "Ping");

II Process any command line arguments
if(iArgCount > I)
{

II Pass in the command-line argument

xcWindow.PostMsg(PM_DONE, szArgV(l], 0);

II Start the message loop
xcApp.Run();

The very first thing Ping d h · . .
with th . oes w en It starts is register its new window type

dard w~ operat~g system. ~en it sets the window's characteristics (i.e., a stan

mdow with a menu, sizable borders, etc.) and calls the Create() method to

PING MAIN PROGRAM 377

378

. from its redetermined parameters. This prompts the
actually create the window . d ! a PM CREATE message. .
operating system to send the.Cin) ~ pts to determine if the user provided a

The next part of m~in a em t an arameter provided on the com-
command-line parameter. Ping assumes th: .Yd w a PM DONE message. This
mand line is a server ad~re~s, and ~e~~: th~;:St~p any P~g process that is cur
message to the window indicates t a i s

rently active and start a new one. () ethod from the instance of C_APPLIC-
Finally, main() calls the Run m . the ro am so its windows can

ATION. This starts an internal message loop in ~ ~OW based window
start processing messages. The first message that any -

receives is PM_ CREATE. f th PM CREATE message in the main Ping win-
The processor method or e -

dow looks like this:

t (void *mpl, void *mp2) void *C_WINDOW_MAIN::MsgCrea e
{

Create a status bar to display miscel~aneous data
~~Status= (C_STATUS *) new C_STATUS(this);

II Create a toolbar control (this, xcStatus);
xcTBar = (C_TOOLBAR_TOP *)new C_TOOLBAR_TOP

II Create a container control
xcMLE = (C_MLE *)new C_MLE(this, D_ID_MLE);

II Set the color and font for the container
xcMLE->SetFont("10.Helv");
xcMLE->SetForegroundColor(255, 255, 255);
xcMLE->SetBackgroundColor(0, 0, 128);

II Initialize the instance attributes
iMustExit = O;

d "") strcpy(szServerAd ress, ;

II Make the window visible
Show();

return FALSE;

h M Create() method creates an instance of
After the window is created, t e f sg lb class xcTBar In all the applica-

. S d n instance o a too ar , .
a status line, xc tatus, an a "ll t . lly be created first since every program
tions in this book, these objects wi ypic:.t in window (at least) As you will
has a toolbar and status line at the t~p ? ~ ~ m~e main window, and you will see
see, however, thesle contrhols are:::i~li~~o: also has a toolbar.
several examples ater w ere a

A SIMPLE PM PING I CHAPTER 9

The MsgCreate() method also creates an instance of a multiline edit control
(xcMLE), used by the program to display the pinging information. The MLE fore
ground and background colors are also set. Like all windows in OS/2, the MLE
will support drag-and-drop color; however, I have elected not to support any facil
ity for saving these changes. You will find out how to save this information in an
INI file later.

The last line of code in the creation method is a call to the Show() routine.
This makes the window visible on the OS/2 desktop. Note that the dimensions and
position of the application window are automatically determined by the operating
system because we defined this window as a standard display type. In other pro
grams in this book we will find out more about sizing and positioning an applica
tion window.

Another key message processor in the Ping program is the MsgSize()
method; this is called any time the WM_SIZE message is sent to the window. This
method must acquire the new size of the window and resize the toolbar and status
bar accordingly, so that they span the full width of the window. Finally, the method
resizes the MLE control to occupy the remaining space in the program window.

void *C_WINDOW_MAIN::MsgSize(void *mpl, void *mp2)
{

int iCX;
int iCY;

//Determine the size of the client area
QuerySize(&iCX, &iCY);

//Stretch the toolbar and status windows so they use the entire window
iCY -= 40;
xcTBar->SetSizePosition(0, iCY, iCX, 40);
iCY -= 25;
xcStatus->SetSizePosition(0, iCY, iCX, 25);

//Make the MLE take up the remainder of the client area space
xcMLE->SetSizePosition(0, 0, iCX, iCY);

return FALSE;

So far, I have not mentioned any of the networking aspects of Ping. This
isn't because there is some sort of magic involved; rather, the network interface for
Ping is so small that it is almost insignificant to the whole program. The pinging
network code is encapsulated in a thread that runs independently of the user inter
face. When the main window receives the PM_DONE message, it executes the
MsgDone() method.

PING MAIN PROGRAM 379

380

This method informs any currently executing Ping thread that it must stop.

It does this by setting the iMustExit attribute and waits for the current thread (if

any) to stop. It then sets the new Ping address and starts a new network thread.

void *C_WINDOW_MAIN::MsgDone(void *mpl, void *mp2}

{
char szStri ng [256];

II Fonnat the window title correctly

xcStatus->Text(0 Pinging %s", (char *}mpl };

II Get the selected server from the caller

strcpy(szServerAddress, (char *}mpl };

II Tenninate the existing thread if it is running

iMustExit = l;
xcPingThread.Waitlndefinite(};

iMustExit = O;

sprintf(szString, "\r\nPinging %s\r\n", szServerAddress };

xcMLE->Insert(szString };

II Begin a thread to Ping servers

xcPingThread.Create(PingThread, 40000, this };

return FALSE;

The Ping thread is much easier to manage than a standard 0512 thread. As

was pointed out in the discussion of the C_THREAD class in the previous part, the

thread function for a C_THREAD class is slightly different than it would be for a

standard 0512 thread. In a normal thread function, the void parameter passed in

contains a pointer to whatever you supplied in the _beginthread() function. In a

thread function for C_THREAD class, the parameter passed to the thread function

is a pointer to the thread instance. The data structure that is passed into the thread

can be retrieved by using the ThreadData() method.

The PingThread() code retrieves the thread instance and the data structure,

as follows:

II Get a pointer to the main window object

pxcThread = (C_THREAD_PM *}pvData;

pxcThis = (C_WINDOW_MAIN *}pxcThread->ThreadData(};

Since this thread will send window messages, it also needs to set a message

queue.

A SIMPLE PM PING I CHAPTER 9

II Create a PM process for this thread

pxcThread->InitializeThread();

t
. Nhow the thread can create an instance of a new c CONNECT PING 1

o pmg t e specified addres Aft th . - - c ass

while appropriate error det:~tioneis ta~~t;I~~e~reation, the connection is opened

II Create a instance of a Ping networking object

C_CONNECT_PING xcPingPort(1, pxcThis->ServerAddress(} };

II Open the Ping channel

iResult = xcPingPort.C_CONNECT_PING::Open(};

interva~~~~~~::=!;~::i!= esta~lish~d~ the thread loops at one-second

minates when the ExitFlag() methoJ ~n receivmg 64-byt~ pa.cke~s. This loop ter

ator of the thread wishes to termm· t thturns a ~e value, Indicating that the cre-
a e e connection.

II_ Loop until the user stops this thread

while(!pxcThis->ExitFlag(} }
{

II Transmit a Ping to the other end of the connection

~emset(byPacket, Oxff, 100);

~Res~lt = xcPingPort.PingTx(byPacket, 64 }·

if{ iResult == D NET OK) '
{ - -

II Receive the Ping results

memset(byPacket, Oxff, 100);

strcpy(szString, •• } ;

xcPingPort.PingRx(byPacket, szString };

II Print the Ping results to the MLE

if(strlen(szString })
{

strcat(szString, "\r\n" } ;

pxcThis->MLE()->Insert(szString);

II Sleep for a second before we ping again

DosSleep(1000 };

else
{

1! Tell the user that something is amiss

WinMessa?,eBox(HWND_~ES~TOP, pxcThis->Window(},

PING transmission error - aborting", D APPNAME,

0, MB_OK I MB_ICONHAND);

PING MAIN PROGRAM 381

382

//Force the window to close

pxcThis->ExitFlag(1);

Once the loop ends, the Ping connection is closed and the thread ends.

//Close the Ping port
xcPingPort.Close();

Since this thread called the PM initialization method when it started, it

must call the TerminateThread() method to dispose of the PM message queue it

created.

// Terminate the thread
pxcThread->TerminateThread();

When you select the connection menu option or click on Ping's sole toolbar

button, you invoke the CmdConnect() method. Though this method is relatively

straightforward, I will describe it because it demonstrates an important concept.

This concept is the use of dialog resources. The method creates an instance of a

C_DIALOG_ADDRESS class. This class will be described shortly, but for now we

will just assume that this dialog has been created and stored in the resource file

compiled into the Ping executable.

The address dialog permits the user to enter a new Ping address; in order

for Ping to connect to this address, the dialog must send the main window the

address the user entered. To accomplish this feat, the dialog must know who its

parent is. After creating an instance of the dialog, the main window sends the dia

log a message containing a pointer to the main window class.

void *C_WINDOW_MAIN::CmdConnect(void *mpl, void *mp2)

{
// Create an instance of the address dialog

C_DIALOG_ADDRESS xcAddress(this, D_DIALOG_ADDRESS);

//Tell the window who its parent is so it can talk back

xcAddress.SendMsg(PM_PARENT, this, 0);

//Process the dialog
xcAddress.Process();

return FALSE;

Finally, the CmdConnect() command processor starts the dialog by calling

its processor method.

A SIMPLE PM PING I CHAPTER 9

I won't go into the oth th d . .
they are, for the most er me o s m the mam window class for Ping here;

these method "th part, self-explanatory, and you should be able to understand

s w1 out much difficulty.

Getting Ping Addresses

Since I explained the c dC .
go into some detail on~e ~~chon() method in the previous _section, we should

obtain IP add fr - IALOG_ADDRESS class that it uses in order to

resses om the user Th 1 d c ·

ing 9_2_ · e comp ete co e 1or this class is shown in List-

//-------------------
// OS/2 Conditionals \

//------------------
#define
#define

INCL_DOS
INCL_ WIN

//------------------
//Standard Headers \

/!------------------

--

#include <os2.h> ---------------------------------

#include <stdio.h>
#include <string.h>

//-----------------
// PMCLASS Headers \

//---------------------
#include <app.hpp> --

#include <window.hpp>
#include <winstd.hpp>
#include <winchild.hpp>

#include <dialog.hpp>
#include <edit.hpp>
#include <status.hpp>
#include <button.hpp>
#include <tbar.hpp>
#include <mle.hpp>
#include <log.hpp>

//-----------------
// NVCLASS Headers \

//-----------------
#include <thread.hp~:----------------------------

#include <threadpm.hpp>

GETTING PING ADDRESSES 383

384

11---------------------
11 Application Headers \

11---
#include "ping.rch"
#include "tbartop.hpp"
#include "address.hpp"
#include "ping.hpp"

11------------------------------
11 Address Window Message Table \

11---
DECLARE MSG TABLE(xtMsgAddress)

DECLARE MSG(PM CREATE,
DECLARE-MSG(WM-DESTROY,
DECLARE=MSG(PM=PARENT,

C DIALOG ADDRESS::MsginitDlg)
C=DIALOG=ADDRESS::MsgDestroy)
C_DIALOG_ADDRESS::MsgParent)

END MSG TABLE

11------------------------------
11 Address Window Conunand Table \

11---
DECLARE_COMMAND_TABLE(xtCorranandAddress)

DECLARE COMMAND(DM CANCEL, C DIALOG ADDRESS::CmdCancel

DECLARE=COMMAND(DM=OK, C=DIALOG=ADDRESS::CmdOK)

END COMMAND TABLE - -
11-------------
11 Constructor\

11---
C_DIALOG_ADDRESS::C_DIALOG_ADDRESS(C_WINDOW *pxcParentObj, int iID)

: C_DIALOG(pxcParentObj, xtMsgAddress)

}

II Enable the required handlers for this window

CommandTable(xtCommandAddress);

Create(i ID) ;

11------------
11 MsginitDlg \

11---
11 Event: PM_CREATE
II Cause: Issued by OS when dialog is created

II
void *C DIALOG ADDRESS::MsginitDlg(void *mpl, void *mp2)
{ - -

pxcEditAddress = (C_EDIT *) new C_EDIT((C_DIALOG *)this, DE_ADDRESS);

II Set the text limit of the address field

pxcEditAddress->SendMsg(EM_SETTEXTLIMIT, MPFROMSHORT(256), O);

A SIMPLE PM PING I CHAPTER 9

II Give the edit window the focus
pxcEditAddress->SetFocus();

II Prevent the default window procedure from executing
return (MRESULT)TRUE;

}

11------------
11 MsgDestroy \
11--II Event: WM_ DESTROY
II Cause:
II

Issued by OS when window is destroyed

void *C_DIALOG_ADDRESS::MsgDestroy(void *mpl, void *mp2)
{

II Dispose of the dynamic memory used by this object

delete pxcEditAddress;

return FALSE;

11-----------
11 MsgParent \

11---11 Event: PM PARENT

II Cause: Issued by parent to identify itself to this child

II
void *C_DIALOG_ADDRESS::MsgParent(void *mpl, void *mp2)
{

}

II Save the pointer to the parent window object

pxcParent = (C_WINDOW *)mpl;

return FALSE;

11-----------
11 CmdCancel \

11--11 Event: DM CANCEL ---------------------------

11 Cause: User selects the Cancel button

II
void *C_DIALOG_ADDRESS::CmdCancel(void *mpl, void *mp2)
{

II Close this dialog
Close(FALSE);

return FALSE;

GETTING PING ADDRESSES 385

386

11-------
1111 CmdOK \ _ --- -
11 Event: DM_OK
II Cause: User selects the OK button

~~id *C_DIALOG_ADDRESS::CmdOK(void *mpl, void *mp2)

{
char szString[256];

II Tell the parent what server was picked
pxcEditAddress->GetText(szString, 256);

II Tell the window who its parent is so it can talk back
if(strlen(szString) > 0)

pxcParent->SendMsg(PM_DONE, szString, 0);

II Close this dialog
Close(FALSE);

return FALSE;

Listing 9·2 ADDRESS.CPP

The ADDRESS.CPP file begins much like the PING.CPP file we dis~ussed
previously. It creates a message table and a command table to handle all the impor-
tant window messages and commands that the dialog needs to P.rocess. .

When an instance of this dialog is created, the constructor is called. In addi

tion to calling the code from the parent constructor, the C_DIALOG_ADDRESS
constructor also sets the command table for the dialog and ca~s the Create()
method supplying the resource identifier, so the PM~LASS class window manager
knows that the dialog is to be loaded from the Ping executable, as opposed to

being created dynamically.

C DIALOG ADDRESS::C DIALOG ADDRESS(C_WINDOW *pxcParentObj, int ilD)
- - - - : C_DIALOG(pxcParentObj, xtMsgAddress

II Enable the required handlers for this window
CommandTable(xtCommandAddress);

Create(i ID) ;

In describing the PING.CPP code, I mentioned the CmdConnect() method
and how it creates an instance of the C_DIALOG_ADDRESS class. Befo~e proces~
ing, the main window sends a PM_PARENT message to the address dialog. This

A SIMPLE PM PING I CHAPTER 9

. invokes the MsgParent method which, as shown below, populates the pxcParent
class attribute, with the window pointer specified in the mpl parameter.

void *C_DIALOG_ADDRESS::MsgParent(void *mpl, void *mp2)
{

II Save the pointer to the parent window object
pxcParent = (C_WINDOW *)mpl;

return FALSE;

Once the user enters an address and presses the dialog's OK button, the
command processor method, CmdOK(), is called. This routine retrieves the cur
rent text value of the address field by calling the GetText() for the edit window.

II Tell the parent what server was picked
pxcEditAddress->GetText(szString, 256);

If the field contains a string, which is assumed to be an address, it sends a
PM_DONE message and the address string back to the main window object. As
we saw earlier, the PM_DONE message starts a new Ping connection.

II Tell the window who its parent is so it can talk back
if(strlen(szString) > O)

pxcParent->SendMsg(PM_DONE, szString, O);

Once the PM_DONE message has been sent, the dialog can be closed. This
is accomplished with a call to the Close() method.

II Close this dialog
Close(FALSE);

Ping Product Information Dialog

The Ping program has code to present the user with one more dialog box, the prod
uct information dialog. Each program you write should have a product informa
tion dialog in order to describe your program, present a copyright notice, etc.

11-------------------
11 OSl2 Conditionals \
11---
ldefine INCL DOS
#define INCL WIN

11------------------
11 Standard Headers \

11---

PING PRODUCT INFORMATION DIALOG 387

388

#include <os2.h>
#include <stdio.h>

11-----------------
11 PMCLASS Headers \ -----------------------------------
11--
#include <app.hpp>
#include <window.hpp>
#include <winstd.hpp>
#include <winchild.hpp>
#include <dialog.hpp>
#include <edit.hpp>
#include <status.hpp>
#include <button.hpp>
#include <tbar.hpp>
#include <mle.hpp>
#include <log.hpp>

11---------------------
11 Application Headers \ -------------------------------------

11--------------------------------------
#include "ping.rch"
#include "about.hpp"

11----------------------------

11 About Window Message Table\ ---------------------------------------

11------------------------------------
DECLARE MSG TABLE(xtMsgAbout) .

DECLARE_MSG(PM_CREATE, C_DIALOG_ABOUT::Msgln1tDlg)

END_MSG_TABLE

11----------------------------

11 About Window Corrmand Table\ ---

11--------------------------------
DECLARE COMMAND TABLE(xtCommandAbout)

DECLARE COMMAND(DM_OK, C DIALOG_ABOUT::CmdOK)

END_COMMAND_TABLE

11-------------
11 Constructor\

1--
------~---~-------

~ DIALOG ABOUT::C DIALOG ABOUT(C_WINDOW *pxcParentObj~ lnt ilD))

- - - - : C_DIALOG(pxcParentObJ, xtMsgAbout

II Enable the required handlers for this window

CorrmandTable(xtCorrmandAbout);

II Create the physical dialog

A SIMPLE PM PING I CHAPTER 9

Create(i ID) ;

II Begin processing the about box
Process();

11------------
11 MsglnitDlg \

11--

11 Event: PM_CREATE

II Cause: Issued by OS when dialog is created

II
void *C_DIALOG_ABOUT::MsglnitDlg(void *mpl, void *mp2)

{

char szString[256];

II Create an edit control instance and associate it with the version

II string in the dialog (ID 105)

pxcEditVersion = (C_EDIT *) new C_EDIT((C_DIALOG *)this, 105);

II Fonnat the real version string and insert it into the dialog

sprintf(szString, "Version: %s". D VERSION);

pxcEditVersion->SetText(szString);

II We can dispose of the edit control object now

delete pxcEditVersion;

return FALSE;

11-------
11 CmdOK \

11--

11 Event: DM_OK

II Cause: User selects the OK button

II
void *C_DIALOG_ABOUT::CmdOK(void *mpl, void *mp2)

{

II Close this dialog
Close(FALSE);

return FALSE;

Listing 9·3 ABOUT.CPP

The code for the Ping About box is shown in Listing 9-3; as you can see, it is

quite straightforward. By now you should recognize the message and command

PING PRODUCT INFORMATION DIALOG 389

390

tables. The only method of any real interest in the ABOUT.CPP source is the code

used to process the MsglnitDlg method. This method creates an instance of an edit

control that points to the version number text in the dialog box.

//Create an edit control instance and associate it with the version

//string in the dialog (ID 105)

pxcEditVersion = (C_EDIT *) new C_EDIT((C_DIALOG *)this, 105);

Once we have this instance, we can use it to set the version number string

in the dialog. We set the version number this way, rather than hard coding it into

the dialog, so we do not have to maintain version numbers in several places in the

code. We can simply define a compiler definition, D_ VERSION, and reference it

whenever we need to display or examine the application version number.

// Format the real version string and insert it into the dialog

sprintf(szString, "Version: %s", D_VERSION) ;

pxcEditVersion->SetText(szString);

Once the version number text has been set, we need to dispose of the

dynamic instance of the edit control in order free up the memory it uses. The delete

statement forces the instance to call its class destructor.

//We can dispose of the edit control object now

delete pxcEditVersion;

The Ping Toolbar

The Ping toolbar is last item in Ping that we need to discuss. The Ping application

provides a toolbar, albeit a simple one. This toolbar supports one button, the con

nect operation the user can press to select different Ping addresses. The entire

source module for the main toolbar follows in Listing 9-4.

We discussed the code to implement a toolbar in the previous chapter, so we

need not review it in any great detail here.

//-------------------
// OS/2 Conditionals \

1/--

#define INCL DOS
#define INCL WIN
#define INCL GPI

//------------------
//Standard Headers \

1/--

#include <os2.h>

A SIMPLE PM PING I CHAPTER 9

. #include <stdio.h>
#include <stdlib.h>

11-----------------
/I PMCLASS Headers\

//---#include <app.hpp> ------------------

#include <window.hpp>
#include <winstd.hpp>
#include <winchild.hpp>
#include <status.hpp>
#include <button.hpp>
#include <tbar.hpp>

//---------------------
// Application Headers \

//------------------------------------#include "tbartop.hpp" ---------------------------------------

#include "ping.rch"

//-------------
//Constructor\

1/--------------------------------------
C_TOOLBAR_TOP::C_TOOLBAR_TOP(C_WINDOW *~:~~~~;~~~~J~-~~~;;;~~-:~:~~~~~:~-)--

C_TOOLBAR(pxcParentObj, D_TOP_TBAR, 40)

DECLARE_BUTTON_TABLE(xtButtons)

DECLARE_BUTTON(DB_CONNECT, DB_CONNECT_UP, DB CONNECT ON, O,

"Ping a new host. .. " ,-8, 4) -

END_BUTTON_TABLE

II Set the status bar object used by the toolbar

Status(pxcStatus);

II Add some toolbar buttons
CreateButtons(xtButtons);

//---------
// Control \

1/--
~oid C_TOOLBAR_TOP::Control(ULONG mpl) ---------------------------------

// Button-Co11mand cross reference

DECLARE_BUTTON_CMD_TABLE(xtCommandLookup)

DECLARE_BUTTON_CMD(DB CONNECT, OM CONNECT)

END_BUTTON_CMD_TABLE - -

THE PING TOOLBAR 391

392

11 t recess the items II Call the parent contra er o P
C TOOLBAR::Control(mpl, xtC011111andLookup);

Listing 9.4 TBARTOP.CPP

Chapter Summary
. . le Pin application using code mostly

In this chapter, we have built a very sn~.p
1

g "th some "glue" code to hold
from the C++ class libraries created ear~er, fula olngfunw~tional Presentation Manager

. th This Ping program is a Y . . th N everything toge er. h the Pm" g provided m e eo-fini h and if you ave seen
application from start to s / k ble simil· arities. In reality, Neo-. "11 notice some remar a . .
Logic Network S~te, you Wl d base as the application presented m this
Logic Ping uses virtually the same c~ ~t ou have the source (almost)!
chapter. Now you know how w~ wr~ e ·~o~t its own idiosyncrasies. For example,

The Ping presente~ her~ is nod;~ acket and expects it to return). A lost
it pings synchronously (i.e., it_ sen Ki.ou h the system you are pinging may

Packet can hang the transmission even g "d this lirni"tation you need to look
. . ll If you want to av01 '

still be functioning norma Y· all 1 t() that will allow you to set and detect
at a function out of the TCP/IP ~I ~e ~ ~TWORK_PING code to recogniz~ a
a time-out. You can then mod~ thi~ information to the user. Also, the Pmg
time-out as a lost packet and _display historical statistics regarding pac~et _loss or
presented here does not pro~ide any b t. instantaneous round-trip time for
long-term efficiency. All it will tell you a ou is

a packet.

A SIMPLE PM PING I CHAPTER 9

In this chapter

/ Implementing a simple NNTP news reader

/ Using connection managers

/ Suggested program enhancements

A Simple News Client

Goals for the News Client Application

With the enhanced editor and Ping code behind us, we can now advance to some
thing a little more complicated. The NNTP news reader we will create in this chap
ter will integrate the network interface and the PMCLASS code into a complex
application featuring multiple windows and multiple network connections.

Many applications being written today consist of a completely encapsu
lated user interface with a central application window and enclosed child win
dows. The news application will be a little different. The main program will
consist of a control panel only. The other child windows for listing available server
groups and subscriptions, as well as the message listings and articles, will all be
managed as separate windows not constrained to a single parent window.

Each window is created as a separate object within the code, and since the
WorkPlace Shell is an object-oriented interface, we will treat each window as a dis
tinct display element. This technique is now coming into vogue with the advent of
object frameworks such as Taligent and OpenDoc. The reasons for this are obvious.
Studies have shown that this is how people work. Users would like a window to
have a single function, and all configuration and management of that window
should reside within the window.

Secondly, understanding how people work helps encapsulate and greatly
simplifies the coding task. As a developer, you no longer have to worry about how
the visual actions of one window affect another. Take tiling in a multiple document
interface (MDI) application, for example. If the user has several MDI windows
open and elects to tile them, the display of each of these windows is likely to be

393

394

. wa that is undesirable for the user. Using comple~ely_sep-
affecte~-perhaps inli~ . yt this problem and make our own programming JOb a
arate windows, we e mina e

lot easier. . h WPS desktop during a typical session with the
Figure 10-1 i~ustr~tes. t ~s cha ter. Each window is completely discon-

news reader we will bmld in b p d resized restyled (undergo font and
nected from its relatives, and can e r:ve '. dow ;n the desktop.
color changes) independently of any o er win

Figure 10-1 News sample program output

Thi . robably a good time to "burst your bubble" regarding what ~ou
sis p ' f d t the NeoLogic News program a ew

will get from this c~~pter: I ve. r:~~~:wa~e application, then you will realize that
times; if you are farmhar _with_thi~f h hopes of getting the source for Neo
it contains a lot of functionality. . you ~ve . d
Logic News in this chapter, you will~~ d~sap~o~: ~hapter is that it suffers from

The tru~h ~b~ut the n~ws apk~a th~~einin detail at the end of the chapter;
considerable ~rrutah~ns. I will e~hit of osting messages in this application
briefl~, yo~ will receiv: no dc:~'\he:e is !iso no way to print, save, or copy news
news is strictly a news rea e . h t u have viewed and what articles you
articles, and no way to keep 1ack ~f~s ~r~;ram is virtually useless, but in reality
have not seen before. It sou_n .s as i rvers and demonstrate some
. t will show you the basic interface to news se '
~dvanced features that you will find in few other news programs.

A SIMPLE NEWS CLIENT I CHAPTER 1 0

I will leave the extensions as an exercise for you. If you remember the basic
concepts of object orientation, you will have little difficulty attaching new features
to this program to suit your own requirements.

Most of the code you will find in this news example has been discussed in
detail in previous chapters, so we will skip those portions of the code which have
been reused. There are, however, lots of new things to learn in this chapter, and we
will start by developing a connection manager for our news client.

Building a News Connection Manager

As explained in Chapter 7, the inherent problem with interfacing an OS/2 applica
tion to TCP/IP is that the program can multitask, while the network connection
cannot. The program could make a network request and put the whole application
on hold while it waits for the server to respond, but this would result in the user
sitting idle for long periods of time.

The alternative is to make several connections to the server so that multiple
network tasks can occur in parallel. For example, with three connections to the
server, one could be loading the list of available newsgroups, which is a lengthy
task, while the user could be reading articles on another, and still another connec
tion could be updating subscriptions. In theory you could make many connections
and the user would never have to wait for any significant amount of time.

Realize, however, that there are limitations on network bandwidth and on
the server itself. The administrator of the server will likely limit the total number
of concurrent connections, and the throughput you can achieve depends very
much upon the rate at which your network runs. A 14.4K SLIP or PPP data link
would offer little benefit in supporting 30 news server connections. Through
experimentation, I have discovered that in most environments two or three server
connections is sufficient for satisfactory client performance.

Now that you understand what multitasking and multiconnection applica
tions can do, you are possibly questioning how this goal can be achieved. The solu
tion, of course, is to break the network interface out of the program mainstream
and create a new class to manage all server interaction.

Parallel network

~oosra ~

News

Client

Connection
Manager

Connection 2

Connection 3

Figure 10·2 Connection manager functionality

BUILDING A NEWS CONNECTION MANAGER

News

Server

395

396

F. ure 10-2 illustrates how the connection manager functions. The client
ig . 1 d"thi

code at the left creates an instance of the connection manager ayer an , m. s
case, specifies three connections. The connection manag~r creates the connections
to the server which now believes it has three separate clients connected.

Whe~ the multithreaded client requires a connection, it requests a free one
from the connection manager, which finds the first idle connectio1:1 ai:~ renrrru: it
to the requester to accomplish its task. Once the requesting thread is finishe~ w1~
the connection, it informs the connection manager, and the server connection is
returned to the connection pool to wait use for another task. In the event that a
thread of the news client requests a connection and they are all busy, ~e connec
tion manager makes the client thread wait by setting a semaphore to trigger when

the connection becomes idle.
The connection manager class is illustrated in Figure 10-3.

C CONNECT MGR

int iConnections C_CONNECT_MGR()

int iConnectionCount -C_CONNECT_MGR()

char szNewsServer[256] void Close()

int iNewsPort; void Initialize()

C_SEM_EVENT hSemConMgr int Connect()

C_NEWS_CONNECT *pxcConnect void Disconnect()

int FreeConnections()

char *Server()

int Port()

int Connections()

int Connection()

int MaxConnections()

void IncrementConnectionCount()

C_NEWS_CONNECT *Connection()

Figure 10·3 C_CONNECT_MGR class

C_CONNECT_MGR provides two constructors; however, the news client
uses only one of them, so for now we will ignore the first m~mber. Th~ unused
constructor is provided in case you want to implement a different client, an~
implements the same code and a combination of the second construct and the Ini-

tialize() method. . .
The constructor used in the news code is shown below; all it does is create

an event semaphore which is used to detect when all the connections are busy.

A SIMPLE NEWS CLIENT I CHAPTER 10

11-------------
11 Constructor \
11---
C_CONNECT_MGR::C_CONNECT_MGR(void)
{

II Create an event semaphore to track the state of the connection manager
hSemConMgr.Create();
hSemConMgr.Open();
hSemConMgr.Post();

J?e des~ctor for the connection manager is responsible for closing all the
connections with the news server. To each one of the connection instances, the
d~structor issues a call to the Close() method, which destroys the connection and
disposes of the TCP/IP socket used for communications. For more detail on the
process involved in Close(), look at the C_CONNECT_NEWS class previously
implemented in Chapter 7.

11------------
11 Destructor \
11---
C_CONNECT_MGR::-C_CONNECT MGR(void)
{ -

int iCtr;

II Open each connection
iCtr = iConnectionCount - 1;
while(iCtr >= O)
{

II Close the server connection
(pxcConnect + iCtr)->Close();
iCtr--;

II Get rid of the network object
delete pxcConnect;

. Creating an instance of the connection manager using the void constructor
is not sufficient to establish connections to the news server. The Initialize method
provides this functionality. Initialize() accepts a specified number of connections
and a server address, as well as a TCP/IP port to use for the communications.

The method creates an instance of the C_CONNECT_NEWS class for each
connection, initializes the connection object, and attempts to open each connection
with the server. Finally, using an attribute internal to C_CONNECT_MGR, Initial
ize() sets the activity state of each connection to an idle indicator.

BUILDING A NEWS CONNECTION MANAGER 397

398

//------------
// Initialize\ ------------ -----------------//--
II
//Description: f h f the II This method establishes a connec~i~n . in~tance or eac o
// required server connections and in1t1al1zes each of them.

II
//Parameters:

- Number of server connections to create // iConCount
- Address of the news server II

II
II

szServer
i Port - TCP/IP port number to use for connections

//Returns :
// void

II .. 1 · (int iConCount, char *szServer, int iPort) void C_CONNECT_MGR::In1t1a ize
{

int iResult;
int iCtr;

II Save the attributes
;connections = iConCount;
iConnectionCount = O;
strcpy(szNewsServer, szServer);
iNewsPort = iPort;

//Create the specified number of connection insta~ces .
C t - (C CONNECT NEWS *)new C CONNECT NEWS[1Connect1ons]; pxc onnec - _ _ _ -

// Initialize each connection .
for(iCtr = O; iCtr < MaxConnect1ons(); iCtr++)
{

// Initialize the news server connection
(pxcConnect+iCtr)->Initialize(Server(), Port());

//Open each connection .
for(iCtr = O; iCtr < MaxConnect1ons(); iCtr++)
{

II Open the connection
iResult = (pxcConnect+iCtr)->Open();
if(iResult >= D_NET_OK)
{

II Say that we have a connection open
IncrementConnectionCount();

}

// Indicate that the connection is initially idle

A SIMPLE NEWS CLIENT I CHAPTER 10

(pxcConnect+iCtr)->Busy(O);

The connection manager code permits requesting threads to close a connec
tion. The Close() method sends a "close" message to the connection object and
marks the state of the connection as idle. Use of this method is not recommended
unless you are sure you know what you are doing. Closing a connection outside
the connection manager will prevent any other thread from accessing that connec
tion. It is used mainly for error control in the client code-if the news client deter
mines that a problem exists on a specific connection, it can be shut down and still
allow the other connections to continue operating normally.

//------
//Close\
/!---
//
//Description:
// This method closes the spec i fied news server connection.
II
// Parameters:
/ / i Connection - Connect ion to c 1 ose
II
// Returns:
// void
II
void C_CONNECT_MGR::Close(int iConnection)

//Close the connection
(pxcConnect+iConnection)->Close():

// Indicate that it is not longer busy
(pxcConnect+iConnection)->Busy(0);

//Reduce the number of available connections
if(iConnectionCount > 0)

iConnectionCount--;

When the client application needs to access the server, it calls the
C_CONNECT_MGR::Connect() method to request a connection. This member
function waits for a free connection, if none is available, by referencing the sema
phore assigned to this duty. Assuming a connection is idle, its offset number is
returned to the caller and the connection is marked as "busy."

If all connections are currently busy, the method will loop at half-second
intervals until a connection becomes available. This is a potential problem point in
the code; though, after many hours of testing, I was not able to hang the program
in this code, it should be approached with caution.

BUILDING A NEWS CONNECTION MANAGER 399

400

11---------
11 Connect \ -----------------------------11--
II
JJ Desc~~~~i~:~hod returns connection from the idle connectio~ pool to .the.
I caller. The connection is marked as busy, an~ the calling function is

JI responsible for disconnecting when its task is complete.

II
11 Parameters:
II none
II
11 Returns: _ >=O connection for use. <O no connection available 11 int
II
int
{

C_CONNECT_MGR::Connect(void)

int iCtr;
ULONG 1 Count;

II Wait for a free connection
hSemConMgr.Waitindefinite();
hSemConMgr.Reset(&lCount);

do {
II Look at each connection .
for(iCtr = O; iCtr < iConnections; iCtr++)

{
II Is the connection busy? ()
if({pxcConnect+iCtr)->Socket() && !(pxcConnect+iCtr)->Busy
{

II Not busy, so we'll use it. Mark as busy.
(pxcConnect+iCtr)->Busy(1);

II Return the connection number that was connected
hSemConMgr.Post();
return iCtr;

II Wait around a while until a connection becomes free
DosSleep{ 500);

} while(1 == 1);

t h but return something to keep the II The program should never ge ere,
II compiler happy
return -1;

A SIMPLE NEWS CLIENT I CHAPTER 10

The requesting code can determine the number of idle connections in the
· connection manager using the FreeConnections() method. This is useful if you

want to build a thread that uses more than one connection to "gang up" on a task.
In NeoLogic News, I used this type of code to allow several connections to update
subscriptions, while leaving one connection free to read articles or perform other
tasks. To accomplish this, I monitored the number of free connections using Free
Connections() to make sure there was always one free for other user demands.

11-----------------
11 FreeConnections \
11---
11
11 Description:
II This method returns the number of currently idle connections.
II
11 Parameters:
II none
II
11 Returns:
II int - The number of free connections.
II
intC_CONNECT_MGR::FreeConnections(void)
{

int iCtr;
int iFreeCtr;

i FreeCtr = O;

II Check each connection
for(iCtr = O; iCtr < iConnections; iCtr++)
{

II If the connection is idle, count it.
if((pxcConnect+iCtr)->Socket() && !{pxcConnect+iCtr)->Busy()

i FreeCtr++;

II Return the number of free connections
return iFreeCtr;

Since a thread cannot keep a connection allocated forever, it must have
some procedure in place to return the connection to the connection manager's free
pool. The Disconnect() method implements this capability by simply marking the
connection's operational state back to an "idle."

BUILDING A NEWS CONNECTION MANAGER 401

402

11------------
11 Disconnect\ ----------------------------------11---
II
II Description: "dl t · II This method returns the specified connection to the l e connec lOn
II pool for use by other processes.

II
11 Parameters:

- Connection to return to the pool 11 ;connect
II
11 Returns:
II none
II
void C_CONNECT_MGR::Disconnect(int iConnect)
{

II Mark the connection as idle
{pxcConnect+iConnect)->Busy(0);

The header file for the connection manager code also contains a number of
simple inline functions that mostly return class attribute values.

c CONNECT NEWS *Connection(int iConnect) . .
- - { return pxcConnect+1Connect, };

int FreeConnections(void);
char *Server(void) return szNewsServer; };

return iNewsPort; }; int Port (void)
int Connection(void return iConnectionCount; };
int MaxConnections(void) { return iConnections; };
void IncrementConnectionCount(void){ iConnectionCount++; };

The connection manager is now behind us. I hope you'~~ sifted through ~e
source because it is the key to making the news client more efficient than most sim
ilar applications, and it demonstra~es some very important advantages of 05/2
over other environments such as Windows (except NT)._ ..

In the next section you will see how the connection manager layer 1s mt~
grated into the news client, and the advantages of the connection manager will
become clear.

Starting Up a News Client

Now that we have established a method for communicating_ with a ~ews ~erver,
we can begin to create a real applications to read news. The first step is obv1?usly
the creation of a main() procedure and, since we want to ~ak~ our news chent a
Presentation Manager application, we need to create a main window.

A SIMPLE NEWS CLIENT I CHAPTER 10

Most of the code for the main window need not be reviewed here, since it is
quite similar to the enhanced editor and Ping which we built earlier. I will, how
ever, explain some of the new features we have not seen previously.

One of the key features of the news client is that all activity in the program
is controlled by the C_ WINDOW _MAIN class. This means that in many cases the
main window object simply acts as a message relay. For example, when the user
subscribes to a new group, the available groups window sends a message to the
main window object, which in turn sends a message to the subscription window.
This technique simplifies the overall design and helps with program maintenance.
If you do find a problem, you can usually track it down to a message handler in
C_ WINDOW _MAIN, since interaction between the other windows is nonexistent.

Figure 10-4 contains a message diagram that graphically explains how the
program interacts with the user and its various internal parts. You should be able
to use this diagram when referencing the C_ WINDOW _MAIN source that follows.
For the sake of simplicity, the diagram does not show every message passed. In
particular, the WM_ CLOSE messages have been eliminated in step 6.

l. The user has executed the program. News makes a connection to the
server, then creates and displays the subscription window. The sub
scription window is populated with data from the user's subscription
file and is updated with the most recent article counts from the server.

2. The user elects to display the list of available groups. News creates the
group window, and populates it based on information available either
from the news server or from the GROUPS.GRP file on disk.

3. The user subscribes to a new group. The group window issues a
PM_GRP_SUBSCRIBE message to the main window. C_WINDOW
_MAIN notifies the subscription window that a new group has been
added to the subscription list.

4. The user wants to view a list of subjects, so he selects a group dis
played in the subscription window. The subscription window issues a
PM_SUB_READ message to the main window, which creates a new
instance of C_ WINDOW _MESSAGE and prompts that window to
load a list of subjects from the server for the specified group.

5. The user finds an article he wants to read. He selects the article's sub
ject from the message list window, which prompts it to send a
PM_ART_READ message to the main window. C_WINDOW_MAIN
creates a new instance of the article viewer class and instructs it to
load the article from the server and display it.

6. The user closes the application. The main window sends a
WM_ CLOSE message to each of the other windows if they are open.
Each window responds with an acknowledgment. After all child win
dows have been notified, the main window sends a WM_ QUIT mes
sage to close the application.

STARTING UPA NEWS CLIENT 403

J § ~ ~ ~~ C'l,j (!j ~
~I ~I ~I ~I

§ § § § §
~ ~ ~ ~ ~

~ o' o' o' o' o'
.:::i

m WM CREATE.
r

WM CREATE

User opens
.

m GRPWnd .
WM CREATE .. .

m User subscribes to a new aroup
. PM_GRP _SUBSCRIBE

PM~SUB_SUBSCR!BE
r

[!] User selects a subscription group •

. PM SUB_READ
'

WM CREATE

[fil
User selects a message

PM ART_READ
,...

WM CREATE

[!] User closes apP.
I ~ .

PM ART_CLOSE .
I•

PM_MSG_CLOS~

I'
.

PM_GRP _CLOSE .
' I ~ PM_SUB_CLOSE

II
·~ '

WM QUIT . -
'

Figure 10-4 News message flow

404 A SIMPLE NEWS CLIENT I CHAPTER 10

Before we begin looking at the code, let's address the globai variables used

by news. I dislike global variables, so I want to try to justify their use in the news

client. All the global data is in the form of classes that are instantiated at program

startup and are not really variable. The objects are created and referenced by many

parts of the code, but for the purposes of this discussion all the global classes are

really constants that get assigned at run time.

I I------------
11 Global Data \

11---
C_APPLICATION xcApp; II Application instance

C_WINDOW_MAIN xcWindow; II Main window instance

C_CONNECT_MGR *pxcMgr; II Connection Manager Instance

C_LOG *pxcLog; II Debug log instance

Since the entire source for news is included on the companion disk, I'm not

going to drag you through every line, especially since much of the code is similar

to that used in previous chapters. However, we will look at some of the key com

ponents starting with the main() procedure .

void main(int argc, char *argv[]
{

II Create a debugging log file
pxcLog = (C LOG *)new C LOG ("news.log", 1) ;
pxcLog->Ope~(); -

II Register the application window
xcWindow.Register("OSl2 News");
xcWindow.WCF_Icon();
xcWindow.WCF_SysMenu();
xcWindow.WCF_Menu();
xcWindow.WCF_TitleBar();
xcWindow.WCF_MinButton();
xcWindow.WCF_TaskList();
xcWindow.WCF_DialogBorder();
xcWi ndow. Create (ID_ WINDOW, "OS 12 News") ;

II Create the news connections
pxcLog->Write("Main:Creating Connection Manager");
pxcMgr = (C CONNECT MGR *)new C CONNECT MGR;
pxcLog->Write("Mai~:Created Co~nection-Manager");

II Set the news server
xcWindow.SetServer(argv[l]);

II Start the message loop
xcApp.Run();

STARTING UP A NEWS CLIENT 405

406

II Destroy the news connections
delete pxcMgr;

II Close and free the debug log
pxcLog->Write("NEWS:Closing Log");
pxcLog->Close();
delete pxcLog;

The first two lines of code in main() are something we have not seen in the
previous applications. These lines set up a debugging log file called NEWS.L?G,
which will receive a dump of some key process information for news. These lines
create an instance of a debug log and open it.

II Create a debugging log file
pxcLog = (C_LOG *)new C_LOG("news.log", 1);
pxcLog->Open () ;

At the end of the main() procedure, we reverse this process by closing the
log and destroying the instance.

II Close and free the debug log
pxcLog->Write("NEWS:Closing Log");
pxcLog->Close();
delete pxcLog;

The Write() operation writes the enclosed string to the log file. This is us~ful
for determining why an application is malfunctioning. Note that C_LC?G::Wnte()
functions much like the C print£() procedure, in that you can enclose print format
ting to display the values of variables used in the application.

pxcLog->Write("The value of xis %ld", x);

Before the application message loop is started, ~ainq also does something
else that we have not seen before. It executes the followmg line:

II Create the news connections
pxcMgr = (C_CONNECT_MGR *)new C_CONNECT_MGR;

This line of code creates an instance of the connection manager that we
examined in the previous section. The program has n?t yet connected to the
server-all we have done is reserve space for the connection manager. . .

Immediately before the message loop is started, we send the mam wmdow
a server address.

II Set the news server
xcWindow.SetServer(argv[l]);

A SIMPLE NEWS CLIENT I CHAPTER 10

The news program requires that a server IP or domain name string be spec-
. ified on the command line. This string is sent to the main window, which has the

responsibility for connecting to the server. The news program currently does not
provide any form of error checking to ensure that an address has been added to the
command line. I will leave this for you to correct.

Once the program drops out of the message loop, main() resumes control
and needs to remove the dynamic memory used by the connection manager. It
makes the following call to destroy the connection manager object and free up its
memory.

II Destroy the news connections
delete pxcMgr;

The main window for news is an object based on the PMCLASS
C_ WINDOW _STD class; from our past experience we know that we need to sup
ply a message table, shown below. The methods it references need not be reviewed
here; although I will go into detail for some of them, the majority are copies of
what we have already seen in previous applications.

11---------------------------
11 Main Window Message Table\
11---
DECLARE MSG TABLE(xtMsgMain)

DECLARE_MSG(PM_CREATE,
DECLARE MSG(PM GROUP CLOSE,
DECLARE-MSG(PM-GROUP-SUBSCRIBE,
DECLARE-MSG(PM-SUB CLOSE,
DECLARE-MSG(PM-SUB-READ,
DECLARE-MSG(PM-MSG-CLOSE,
DECLARE-MSG(PM-MSG-READ,
DECLARE-MSG(PM-ART-CLOSE,
DECLARE=MSG(PM=CONNECT,
DECLARE_MSG(WM_CLOSE,
DECLARE_MSG(WM_SIZE,
DECLARE_MSG(WM_CONTROL,
DECLARE_MSG(WM_PAINT,

END_MSG_TABLE

C_WINDOW_MAIN::MsgCreate)
C_WINDOW_MAIN::MsgGroupClose)
C_WINDOW_MAIN::MsgGroupSubscribe)
C_WINDOW_MAIN::MsgSubscriptionClose)
C_WINDOW_MAIN::MsgSubscriptionRead)
C_WINDOW_MAIN::MsgMessageClose)
C_WINDOW_MAIN::MsgMessageRead)
C_WINDOW_MAIN::MsgArticleClose)
C_WINDOW_MAIN::MsgConnect)
C_WINDOW_MAIN::MsgClose)
C_WINDOW_MAIN::MsgSize)
C_WINDOW_MAIN::MsgControl
C_WINDOW_STD::MsgPaint)

C_ WINDOW _MAIN also supports some menu and toolbar commands, so
we have also implemented a command table.

11---------------------------
11 Main Window Conunand Table \
11---
DECLARE_COMMAND_TABLE(xtCOllUllandMain)

DECLARE COMMAND(DM GROUPS,
DECLARE=COMMAND(DM=SUBSCRIPTIONS,

STARTING UP A NEWS CLIENT

C_WINDOW_MAIN::CmdGroups)
C_WINDOW_MAIN::CmdSubscriptions)

407

408

DECLARE COMMAND(DM_EXIT,
DECLARE=COMMAND(DM_INFO,

END MSG TABLE

C WINDOW MAIN::CmdExit)
C=WINDOW=MAIN::CmdHelpinfo)

The constructor for C_ WINDOW _MAIN assigns the message and com
mand tables and additionally initializes the attributes used by the instance.

11-------------
11 Constructor\
11---
11
II Description: . II This constructor initializes the main window class for the editor.
II It zeroes the class attributes and sets up the corrrnand handler and

II server address.
II
11 Parameters: II szServer - Address of the news server

II C WINDOW_MAIN::C_WINDOW_MAIN(void) C_WINDOW_STD(xtMsgMain)

{
II Initialize all child objects
pxcTBar = O;
pxcStatus = 0;
pxcMenu = O;
pxcGroups = 0;
pxcSubs = O;
pxcMsg = O;
pxcArticle = O;

II Enable the required command handler for this window
CommandTable(xtC011111andMain);

II Set the server address
strcpy{ szServerAddress, "");

} The destructor for the main window object is similar to the one we imple
mented for the enhanced editor. It simply deallocates the space used by all the

child window objects.

11-------------
11 Destructor\
11---
11
II Description: . II The destructor frees up all the dynamically allocated obJects
II and attributes used by this instance.

II

A SIMPLE NEWS CLIENT I CHAPTER 10

. C_WINDOW_MAIN: :-C_WINDOW MAIN(void)
{ -

pxcLog->Write(·-c_WINDOW_MAIN:Start");

delete pxcTBar;
delete pxcStatus;
delete pxcMenu;

delete pxcGroups;
delete pxcSubs;
delete pxcMsg;
delete pxcArticle;

pxcLog->Write(·-c_WINDOW_MAIN:End");

The MsgCreate() is called when the window receives a WM_ CREATE mes
~age _and sets up the characteristics of the window. Since there is a lot of new code
m this method, we should spend some time studying it.

11-----------
11 MsgCreate \
/!---
!/ Event: WM CREATE
II Cause: Issued by OS when window is created
II Description:Thi~ ~~ho~ gets called when the window is initially created. jj It in1t1al1zes all the visual aspects of the class.

void *C_WINDOW_MAIN::MsgCreate(void *mpl, void *mp2)
{

char
char

szX[lO];
szY [10];

II Create a status bar to display miscellaneous data
pxcStatus = (C_STATUS *} new C_STATUS(this);

//Create a toolbar control
pxcTBar = (C_TOOLBAR_TOP *}new C_TOOLBAR_TOP(this, pxcStatus);

//Keep track of the main menu so we can enable/disable items
pxcMenu = (C_MENU *}new C_MENU(this);

//Load parameters out of the IN! file
C_INI_USER xclni ("BookNews") ;
xcini .Open();
xclni.Read{ "MainX", szX, "O", 10 };
xcini .Read("MainY", szY, "O", 10) ;
xclni .Close();

STARTING UP A NEWS CLIENT 409

410

II Make the window look like a control panel
SetSizePosition(atoi(szX), atoi(szY), xcApp.DesktopWidth() I 10 * 4,

xcApp.DialogBorderHeight() * 2 + xcApp.TitleBarHeight() +
xcApp.MenuHeight() + 65);

II Make the window visible
Show();

II Disable menu options so the user can't select information
II until we're connected
pxcMenu->Disableitem(DM WINDOWS);

II Disable the toolbar buttons until we're connected
pxcTBar->ButtonEnable(DB_WND_GRP, FALSE);
pxcTBar->ButtonEnable(DB_WND_SUB, FALSE);

II Begin a thread to open all the news connections
xcConnectThread.Create(ConnectThread, 40000, this);

return FALSE;

The first new code we see are the lines that load the previous window states
from the OSUSR.INI file. MsgMain() creates an instance of C_INI_USER and
opens it in order to retrieve the last known X,Y coordinates of the main control
panel. Since the size of this window is fixed, we do not need to save the width and

height dimensions.

II Load parameters out of the INI file
C INI USER xcini ("BookNews") ;
xcini :open();
xcini.Read("MainX", szX, "0", 10);
xcini.Read("MainY", szY, "0", 10);
xcini .Close();

Something else that is new is the code to disable the "Windows" menu item,
and the toolbar buttons used to display the available groups window and the sub
scription window. Since both of these windows require network access, we need to
prevent the user from opening these windows until we are connected to the news

server.

II Disable menu options so the user can't select information
II until we're connected
pxcMenu->Disableitem(DM_WINDOWS);

II Disable the toolbar buttons until we're connected
pxcTBar->ButtonEnable(DB_WND_GRP, FALSE);
pxcTBar->ButtonEnable(DB_WND_SUB, FALSE);

A SIMPLE NEWS CLIENT I CHAPTER 10

Finally, the MsgCreate() method starts a thread to initialize the connection
manager.

II Begin a thread to open all the news connections
xcConnectThread.Create(ConnectThread, 40000, this);

c I?e Connect~ead() thread function calls the Initialize() method for the
o~ection m~ager mstance and displays the connection status in the main win
~w s status line. If the connection manager fails to establish a server connection
.et pro?1'amh does not allow further processing to occur, and the user's only optio~
1s o exit t e program.
. Apssuming a successful connection was established to the server the thread
issues a M_CONNECT message to the main window. '

11---------------
11 ConnectThread \

jj---
11 Description:
II This thread :unction creates a connection to the news server. If
JJ successful, it sends a PM_CONNECT message back to the main window class.

void _Optlink ConnectThread(void *pvData)
{

C_WINDOW_MAIN *pxcThis;
C_THREAD_PM *pxcThread;

II Get a point to the main window object
pxcThread = (C_THREAD_PM *)pvData;
pxcThis = (C_WINDOW_MAIN *)pxcThread->ThreadData();

II Create a PM process for this thread
pxcThread->InitializeThread();

pxcThis->S~a~us~)->Text("Connecting to %s ... ", pxcThis->ServerAddress())·
pxcMgr->Initialize(D_MAX_CONNECT, pxcThis->ServerAddress(), D_NEWS_PORT);

~I If there was an error, tell the user about it
if(pxcMgr->Connections() <= o)
{

II Tell the user that the connection failed
WinMessageBox(HWND_DESKTOP, pxcThis->Window(),

"News could not connect to the server"
' "News", 0, MB_OK I MB_ICONHAND);

pxcThis->Status()->Text("Not connected");

STARTING UP A NEWS CLIENT 411

412

else
{

//Tell the main window that there were no errors - we're online!
pxcThis->PostMsg(PM_CONNECT, 0, 0);

//Terminate the thread
pxcThread->TerminateThread(};

1bis PM_CONNECT message is managed by the MsgConnect() method.
1bis method enables the "Windows" menu item and toolbar buttons, and then
issues a DM_SUBSCRIPTION command to display the subscription window.

//------------
// MsgConnect \
/l---
11 Event: PM_CONNECT
II Cause: Issued by the connection thread when a connection has been
// established
II
void *C_WINDOW_MAIN::MsgConnect(void *mpl, void *mp2)
{

II Tell the user he is connected
pxcStatus-> Text ("Connected to %s ... ", ServerAddress ()) ;

// Enable menu options so the user can select information
pxcMenu->Enableitem(DM_WINDOWS };

// Enable the toolbar buttons
pxcTBar->ButtonEnable(DB_WND_GRP, TRUE);
pxcTBar->ButtonEnable(DB_WND_SUB, TRUE);

//Give the user some audible feedback to say that we've connected
DosBeep(100, 100);

/I Since we are now connected, open the subscription window and tell
II it to update.
SendMsg(WM_COMMAND, (void *}DM_SUBSCRIPTIONS, 0);

return FALSE;

When the DM_SUBSCRIPTION command is received, the CmdSubscrip
tions() method is called. It creates an instance of the subscription window class
and sends it a PM_POPULATE message to begin loading the subscriptions.

A SIMPLE NEWS CLIENT I CHAPTER 10

/!------------------
. // CmdSubscriptions \
//---
//Event: DM_SUBSCRIPTION
//Cause: User selects the Window/Subscriptions option in order to

display the list of available groups supported by the server. II
II
void *C_WINDOW_MAIN::CmdSubscriptions(void *mpl, void *mp2)
{

//Only permit the user to open a sub window if it isn't already open
if(! pxcSubs)
{

else
{

//Create a new instance of the groups window
pxcSubs = (C_WINDOW_SUBSCRIPTION *}new C_WINDOW_SUBSCRIPTION;

//Set up groups window
pxcSubs->Register("Subscriptions" };
pxcSubs->WCF_Standard(};
pxcSubs->Create(ID_SUBSCRIPTIONS, "Current Subscriptions" };

//Tell the group window that this is its parent
pxcSubs->SendMsg(PM_PARENT, (void *}this, O);

//Tell the group window to populate
pxcSubs->SendMsg(PM_POPULATE, 0, 0);

//Otherwise give the user focus to the existing window
pxcSubs->Show();

return FALSE;

If the user closes the subscription window, a PM_SUB_CLOSE message is
sent to the main window to notify it of the action. The instance of the subscription
window is then destroyed.

11----------------------
11 MsgSubscriptionClose \
//---11 Event: PM_SUB_CLOSE
II Cause: Issued by the subscription window when the user closes it
II
void *C_WINDOW_MAIN::MsgSubscriptionClose(void *mpl, void *mp2)
{

/I Delete the current subscription window
delete pxcSubs;

STARTING UP A NEWS CLIENT 413

414

pxcSubs = 0;

return FALSE;

When the user clicks the "groups" toolbar button or menu sel~ction, the
rou s windows is created. This invokes the CmdGroups() method, which creates

g p instance of the groups window class and issues a PM_POPULATE message
~o~~~This code is almost a duplicate of the subscription startup code.

//-----------
// CmdGroups \ -------------------------------------//--------------------------------------
// Event: OM GROUPS . . d · l the II Cause: User selects the Window/Groups option in order to isp ay
II list of available groups supported by the server.

II) void *C_WINDOW_MAIN::CmdGroups(void *mpl, void *mp2
{

//Only permit the user to open a groups window if it isn't already open

if(!pxcGroups)
{

//Create a new instance of the groups window
pxcGroups = (C_WINDOW_GROUP *)new C_WINDOW_GROUP;

//Set up the available groups window
pxcGroups->Register("Groups");
pxcGroups->WCF Standard();
pxcGroups->Create(ID_ GROUPS, "Available Newsgroups

11

) ;

//Tell the group window that this is its parent
pxcGroups->SendMsg(PM_PARENT, (void *)this, 0);

// Tell the group window to populate
pxcGroups->SendMsg(PM_POPULATE, 0, 0);

else
{ II Otherwise give the user focus to the existing window

pxcGroups->Show();

return FALSE;

Like the subscription window, when the group window is closed it sends a
message back to the main window manager. The PM_ GROUP _CLOSE message
causes the MsgGroupClose() method to be activated, which destroys the group

window instance.

A SIMPLE NEWS CLIENT I CHAPTER 10

//---------------
'// MsgGroupClose \
//---
//Event: PM GROUP CLOSE
//Cause: Issued by the group window when the user closes it
II
void *C_WINDOW_MAIN::MsgGroupClose(void *mpl, void *mp2
{

//Close and Delete the current group window
delete pxcGroups;
pxcGroups = O;

return FALSE;

The groups window has an additional purpose that generates a different
window message. The groups window permits the user to select new newsgroups
to which a subscription will be made. For each group that the user subscribes to,
the group window will send a PM_GROUP _SUBSCRIBE message. Though the
main window is not responsible for subscribing to newsgroups, it is the central
control for the application. The group window knows nothing about the subscrip
tion process, so the main window acts as a messenger.

When a PM_GROUP _SUBSCRIBE message is received in the message
queue, the main window generates a PM_SUB_SUBSCRIBE for the subscription
window, attaching the names of the new groups.

//-------------------
// MsgGroupSubscribe \
//---
//Event: PM GROUP SUBSCRIBE
//Cause: Issued by the group window when the user subscribes to a group.
// Description:This method is invoked any time a group is subscribed to.
// The mpl parameter contains a pointer to the group name string
// being subscribed.
II
void *C WINDOW MAIN::MsgGroupSubscribe(void *mpl, void *mp2
{ - -

//Tell the subscription window about the new group
pxcSubs->SendMsg(PM_SUB_SUBSCRIBE, mpl, 0);

return FALSE;

If the user selects a group from the subscription, this notifies news that the
user wishes to read the list of subjects from that group. The subscription window
sends a PM_SUB_READ message to the main window handler.

STARTING UP A NEWS CLIENT 415

416

MsgSubscriptionRead() determines the name of the group t? be read, cre
ates an instance of a message list window, and instructs this new wmdow to pop
ulate itself with information from the server.

11----------------------
11 MsgSubscriptionRead \
11---
11 Event: PM_SUB_READ
II Cause: Issued by the subscription window when the user wants to
II read a subscription.
II Description:This method is called any time the user selects a subscription
II to read. This will create an instance of a message list window
II and display the subscription contents.

II
void *C_WINDOW_MAIN::MsgSubscriptionRead(void *mpl, void *mp2
{

char
char

*szGroup;
szStri ng [64];

II Determine which group is being displayed
szGroup = (char *}mpl;
pxcLog->Write("MsgSubscriptionRead:Group=%s", szGroup);

II Only permit the user to open a groups window if it isn't already open

if (! pxcMsg)
{

II Create a new instance of the groups window
pxcMsg = (C_WINDOW_MESSAGE *}new C_WINDOW_MESSAGE;

II Set up message window
pxcMsg->Register("Message");
pxcMsg->WCF_Standard(};
pxcMsg->Create(ID_MESSAGES, "Message List" };

II Tell the message window that this is its parent
pxcMsg->SendMsg(PM_PARENT, (void *}this, 0);

else

II Tell the message window to populate for the given group in mpl
pxcMsg->SendMsg(PM_POPULATE, mpl, 0);

II Otherwise give the user focus to the existing window
pxcMsg->Show();

return FALSE;

A SIMPLE NEWS CLIENT I CHAPTER 10

When th~ use~ closes a message window, a PM_MSG_CLOSE message is
sent to the ~am wmdow that invokes the MsgMessageClose() method. This
destro~s the mstance of the message list window and deallocates the memory it
wasusmg.

11-----------------
11 MsgMessageClose \
11---
11 Event: PM MSG CLOSE
II Cause: Issued-by the message window when the user closes it
II
void *C_WINDOW_MAIN::MsgMessageClose(void *mpl, void *mp2)
{

II Delete the current message window
delete pxcMsg;
pxcMsg = O;

return FALSE;

. If the user selects a subject from the message list, news is notified that an
article should _be displaye~. This starts the MsgMessageRead() method, which
manages creation of an article window and instructs the new window to load a
specific article number requested by the message list window when the item was
selected.

11----------------
11 MsgMessageRead \
11---
11 Event: PM MSG READ
II Cause: Issued-by the message window when the user wants to read
II an article.
II Description:This method is called any time the user selects an article
II to read. This will create an instance of an article window jj and display the article supplied in mpl to the viewer.

void *C_WINDOW_MAIN::MsgMessageRead(void *mpl, void *mp2)
{

pxcLog->Wri te ("MsgMessageRead: Fil e=%s", (char *}mpl) ;

II Only permit the user to open a window if it isn't already open
if(!pxcArticle)
{

II Create a new instance of the groups window
pxcArticle = (C_WINDOW_ARTICLE *}new C WINDOW ARTICLE; - -

II Set up article window

STARTING UP A NEWS CLIENT 417

418

else
{

pxcArticle->Register("Article");
pxcArticle->WCF_Standard();
pxcArticle->Create(ID_ARTICLE, "News Article");

II Tell the message window that this is its parent
pxcArticle->SendMsg(PM_ART_PARENT, (void *)this, 0);

II Tell the article window to populate for the given article in mpl

pxcArticle->SendMsg(PM_ART_POPULATE, mpl, 0);

II Otherwise give the user focus to the existing window

pxcArticle->Show();

return FALSE;

As you have probably come to expect by now, when the user closes an arti

cle viewer window, a message is sent back to the main window handler.

PM_ART_CLOSE causes the MsgArticleClose() method to be called, which

destroys the article window instance.

11-----------------
11 MsgArticleClose \

11---
11 Event: PM_ART_CLOSE
/I Cause: Issued by the article window when the user closes it

II
void *C_WINDOW_MAIN::MsgArticleClose(void *mpl, void *mp2)
{

II Delete the current article window
delete pxcArticle;
pxcArticle = O;

return FALSE;

The final method we are going to examine in the C_ WINDOW _MAIN class

is MsgClose(), which is called when the user closes the main window by either

double-clicking tl}.e mouse on the system menu button or by selecting the "Exit"

menu item.

A SIMPLE NEWS CLIENT I CHAPTER 10

11----------
11 MsgClose \

11---11 Event: WM CLOSE
II Cause: Issued by OS when window is closed

II
void *C_WINDOW_MAIN::MsgClose(void *mpl, void *mp2)
{

char szSt ring [80] ;
int iX;
int iY;
int iW;
int iL;

II Get all the savable parameters
GetSizePosition(&iX, &iY, &iW, &iL);

II Save parameters into the INI file
C_INI_USER xcini("BookNews");
xclni .Open();
sprintf(szString, "%d", iX) ;
xclni.Write("MainX", szString);
sprintf(szString, "%d", iY);
xcini.Write("MainY", szString);
xclni .Close();

II Debug
pxcLog->Write("NEWS:WM_CLOSE:Start");

II If there is a groups window open, close it and destroy
if(pxcGroups)

pxcGroups->SendMsg(WM_CLOSE, 0, 0):

II If there is a subscriptions window open, close it and destroy
if(pxcSubs)

pxcSubs->SendMsg(WM_CLOSE, 0, 0);

II If there is a message window open, close it and destroy
if(pxcMsg)

pxcMsg->SendMsg(WM_CLOSE, 0, 0);

II If there is an article window open, close it and destroy
if(pxcArticle)

pxcArticle->SendMsg(WM_CLOSE, 0, 0);

II Application was told to close, so post a QUIT message to the OS
PostMsg(WM_QUIT, 0, 0);

STARTING Up A NEWS CLIENT 419

420

II Debug
pxcLog->Write("NEWS:WM CLOSE:End") ;
return FALSE;

MsgClose() first retrieves the current size of the window and writes this

information to the OS2USER.INI files. In this way, if the user has moved the win

dow, it can be repositioned the next time the program is executed.

II Get all the savable parameters
GetSizePosition(&iX, &iY, &iW, &iL);

II Save parameters into the INI file
CINI USER xclni("BookNews");
xclni ~Open();
sprintf(szString, 11 %d 11

, iX);
xclni.Write("MainX", szString);
sprintf(szString, 11 %d 11

, iY);
xclni.Write("MainY", szString);
xclni .Close();

Finally, MsgClose() ensures that all the child windows are closed. In the cur

rent version of news, only a single instance of each window can exist. This makes

management of the closure much easier for the purposes of demonstration.

In a full news application, you would want to permit the user to have mul

tiple message lists and article viewers open at any time. Closing the application

would then become much more complicated because the program would be

required to keep track of each window.

Listing Available Groups

In this section, we will add the capability of displaying a list of available news

groups supported by the NNTP server. We need not review every method in the

C_WINDOW_GROUP class because you have seen most of this code before.

Instead, I will show only those items that differ from previous examples.

From the message diagram shown in Figure 10-4, we already know a great

deal about the contents of the C_ WINDOW_ GROUP class. For example, we know

that is it instantiated by the main window when the user selects the "Available

Groups" menu item of the toolbar button. We also know that, when the user closes

the group window, it issues a PM_GRP _CLOSE message to the instance of

C_ WINDOW _MAIN. Finally, if the user subscribes to a group, we know that this

window generates a PM_GRP _SUBSCRIBE message.

The basic functions are all implemented in the message and command

methods of the class. The message table for C_ WINDOW_ GROUP follows.

A SIMPLE NEWS CLIENT I CHAPTER 10

11----------------------------
. II Group Window Message Table\

11---
11
DECLARE_MSG_TABLE(xtMsgGroup)

DECLARE MSG(PM CREATE,
DECLARE-MSG(PM-PARENT,
DECLARE-MSG(WM-CLOSE,
DECLARE-MSG(WM-SIZE,
DECLARE=MSG(WM=CONTROL,
DECLARE MSG(WM PAINT,
DECLARE-MSG(PM-POPULATE,

END_MSG_TABLE -

C_WINDOW_GROUP::MsgCreate)
C_WINDOW_GROUP::MsgParent)
C_WINDOW_GROUP::MsgClose)
C_WINDOW_GROUP::MsgSize)
C_WINDOW_GROUP::MsgControl)
C_WINDOW_STD::MsgPaint)
C_WINDOW_GROUP::MsgPopulate)

The C_WINDOW_GROUP class currently provides only two command

handlers. These are shown in the following command table.

11----------------------------
11 Group Window Co11111and Table\

11---
11
DECLARE_COMMAND_TABLE(xtCommandGroup)

DECLARE COMMAND(DM GROUP SUBSCRIBE,
DECLARE-COMMAND(OM-GROUP-LOAD,

END MSG TABLE - -

C_WINDOW_GROUP::CmdSubscribe)
C_WINDOW_GROUP::CmdRefresh)

The constructor and destructor for this class should look familiar by now.

The constructor simply associates the instance with the message and command

tables, while the destructor frees up the dynamic memory allocated by the child

window objects when the instance was created.

11-------------
11 Constructor\

11---
11
II Description:
II This constructor assigns the message and corrmand tables for this class.

II
C_WINDOW_GROUP::C_WINDOW_GROUP(void) : C WINDOW STD(xtMsgGroup)
{ - -

II Enable the required handlers for this window
ConunandTable(xtC011111andGroup);

LISTING AVAILABLE GROUPS 421

422

11-------------
11 Destructor\
11---
11
II Description:
II This destructor disposes of the memory used by the child
II window classes.
II
C_WINDOW_GROUP::-C_WINDOW_GROUP(void)
{

pxcLog->Write("GROUP:Destructor:Start");

II Free up the child windows
delete pxcTBar;
delete pxcStatus;
delete pxcCont;

pxcLog->Write("GROUP:Destructor:End");

The MsgCreate() message handler retrieves any saved window size and
position information for the group windows, as well as the previous window col
ors and font. It uses this data to restore the window to the exact state it was in dur
ing the previous execution of the program.

11-----------
11 MsgCreate \
11---
11 Event: WM CREATE
II Cause: Issued by OS when window is created

II
void *C_WINDOW_GROUP::MsgCreate(void *mpl, void *mp2
{

char szX[lO];
char szY [10];
char szW[lO];
char szL[lO];
char szFont [80] ;
char szFontSi ze[lO];
char szBColor[80];
char szFColor[80];

II Create a status bar to display miscellaneous data
pxcStatus = (C_STATUS *) new C_STATUS(this);

II Create a toolbar control
pxcTBar = (C_TOOLBAR_GRP *)new C_TOOLBAR_GRP(this, pxcStatus);

A SIMPLE NEWS CLIENT I CHAPTER 1'0

II Create a new container to display group listing
pxcCont = (C_CONTAINER_GRP *)new C_CONTAINER_GRP(this);

II Load parameters out of the INI file
C_INl_USER xclni ("BookNews") ;
xclni .Open();
xclni .Read("GroupFont", szFont, "System Proportional", 80);
xclni .Read("GroupFontSize", szFontSize, "10", 10) ;
xclni.Read("GroupBColor", szBColor, "000,000,000", 80);
xclni.Read("GroupFColor", szFColor, "255,255,255", 80);
xclni.Read("GroupX", szX, "0", 10);
xclni.Read("GroupY", szY, "O", 10);
xclni.Read("GroupW", szW, "O", 10);
xclni.Read("GroupL", szL, "0", 10);
xclni .Close();

II Set the font in the window
pxcCont->SetFont(szFont, atoi(szFontSize));

II Set the window colors
pxcCont->SetForegroundColor(atoi(&szFColor[O]),

atoi(&szFColor[4]), atoi(&szFColor[8]));
pxcCont->SetBackgroundColor(atoi(&szBColor[O]),

atoi(&szBColor[4]), atoi(&szBColor[8]));

if(atoi(szW) != O && atoi(szL) != o)
{

II Position and size the window
SetSizePosition(atoi(szX), atoi(szY), atoi(szW), atoi(szL));

II Make the window visible
pxcCont->Focus();

return (void *)TRUE;

By examining the code in the main window, we know that when a new
instance of C_WINDOW_GROUP is created, the main window sends it a
PM_POPULATE message. Processing of this message is managed by the MsgPop
ulate() method responsible for populating the group window with the list of avail
able newsgroups.

Since lo~ding a c~ntainer control can be a very time-consuming task, Msg
Populate() begms executing a new thread to avoid blocking Presentation Manager.

LISTING AVAILABLE GROUPS 423

424

11-------------
11 MsgPopulate \

11---
11 Event: PM POPULATE
II Cause: Issued by OS during the initial creation of the groups window

II
II This method populates the container object within the group window. Since

II this is a time-consuming task, it will be done on a separate PM thread.

II
void *C_WINDOW_GROUP::MsgPopulate(void *mpl, void *mp2)

{
II Begin a thread to populate the group list

xcPopulateThread.Create(PopulateGroupThread, 40000, this);

return FALSE;

The PopulateGroupThread() function is executed on a separate thread to

load the container information. This is the first time we have seen any interaction

with the server, so I'll spend a bit more time on this code.

The first thing that the thread function does is to determine if the group file

needs to be retrieved from the server. Since this list can contain in excess of 5000

groups for a typical server, it can take a significant amount of time to download.

For this reason the list of available groups is maintained in the GROUPS.GRP. If

this file does not exist, it must be downloaded from the server.

In the PopulateGroupThread() code you will see the following code:

II Get a network connection
iConnection = pxcMgr->Connect();
if(iConnection >= 0)
{

pxcMgr->Connection(iConnection)->List("groups.grp");

pxcMgr->Disconnect(iConnection);

This code retrieves a free connection from the connection manager, and uses

this connection to fetch a list of all available newsgroups from the server. This

information is stored in the GROUPS.GRP file. The final step in the network task

is to return the connection back to the connection manager by calling the

Disconnect() method.
Once the GROUPS.GRP file exists, it is opened and each item is counted.

This is done to improve the performance of the container load. Based on the item

count, enough memory is allocated from the heap to store each container record.

Then the GROUPS.GRP file is reopened and each of the group strings is

loaded into a container record, using the following code:

pRecord = (T_GRPRECORD *)pxcThis->Container()->Fill(pRecord, szString);

A SIMPLE NEWS CLIENT I CHAPTER 10

~e co~e for the container load, and more specifically the Fill() method, will

be descnbed in more detail later in this chapter.

. ~er each record has been populated, the records are inserted into the con-

tainer window by placing a call to the Insert() method of the group container class.

II Perform the container insertion

pxcThis->Container()->Insert(0, pFirstRecord, iCount);

Finally, the records are sorted and the container window is redrawn to

show the list of available newsgroups.

II Sort the records
pxcThis->Container()->Sort(SortGroupByAlpha);

That is all there is to loading a container. It is not a very difficult concept to

gras~ as long as you remember that the container code within Presentation Man

ager ~s :r:iot very fast, so this code should always run on its own thread of execution.

The listing for the PopulateGroupThread() function follows.

11----------------
11 PopulateThread \

jj---

11 Description:

II This thread loads the groups from the groups.grp file into the

II container displ~yed by the group window. This is done on a separate

jj thread because 1t can be a very time-consuming task.

void _Optlink PopulateGroupThread(void *pvData)
{

C_WINDOW_GROUP
C_THREAD_PM
char
char
FILE
int
int
T_GRPRECORD
T _ GRPRECORD

*pxcThis;
*pxcThread;
cChar;
szStri ng [1024];
*hFile;
iCount;
iConnection;
*pFi rstRecord;
*pRecord;

II Get a point to the main window object

pxcThread = (C_THREAD_PM *)pvData;

pxcThis = (C_WINDOW_GROUP *)pxcThread->ThreadData();

II Create a PM process for this thread
pxcThread->InitializeThread();

LISTING AVAILABLE GROUPS 425

426

II Look to see if the group file is here
if(access("groups.grp", 0) != 0)
{

pxcThis->Status()->Text("Loading groups from server ... ");
II Debug
pxcLog->Write("Loading groups from the server");

II Get a network connection
iConnection = pxcMgr->Connect();

II Debug
pxcLog->Write("Got connection:%d", iConnection);

if(iConnection >= 0)
{

pxcLog->Write("Getting list");
pxcMgr->Connection(iConnection)->List("groups.grp");
pxcLog->Write("Disconnecting") ;
pxcMgr->Disconnect(iConnection);

}
pxclog->Write("Done 1 oadi ng groups from the server") ;

II The first thing we need to do is determine the number of
II supported groups
pxcThis->Status()->Text("Populating news groups ... ");
iCount = O;
hFile = fopen("groups.grp", "r");
if(hFile)
{

while(!feof(hFile) && fgets(szString, 1024, hFile))
{

II Get rid of any CRILF
if(strstr(szString, "\r"))

*strstr(szString, "\r") = 0;
if(strstr(szString, 11 \n"))

*strstr(szString, 11 \n") = 0;

II Get the support indicator character
cChar = (char)toupper(szString[strlen(szString) - l]);

II If this group is supported count it
if(cChar != 'X' I I (cChar == 'X' &&

szString[strlen(szString) - 2] != ' •))

iCount++;

A SIMPLE NEWS CLIENT I CHAPTER 10

fclose(hFile);

pxcLog->Write("iCount =%d", iCount) ;

II Insert groups if there are any
if(iCount > 0)
{

II Allocate some container space, but keep track of where it starts
pFirstRecord = (T_GRPRECORD *)pxcThis->Container()->Allocate(

sizeof(T_GRPRECORD), (USHORT)(iCount+l));
pRecord = pFirstRecord;

II Now insert each supported record into the container
iCount = 0;
hFile = fopen("groups.grp", "r");
while(!feof(hFile) && fgets(szString, 1024, hFile))
{

II Get rid of any CRILF
if(strstr(szString, 11 \r"))

*strstr(szString, "\r") = O;
if(strstr(szString, 11 \n"))

*strstr(szString, 11 \n") = O;

II Get the support indicator character
cChar = (char)toupper(szString[strlen(szString) - l]);

II If this group is supported count it
if(cChar != 'X' II (cChar == 'X' &&

szStri ng [strl en (szStri ng) - 2] ! = • •))

if(strstr(szString, 11 11
))

*strstr(szString, " ") = O;

II Insert this record
if(strlen(szString)
{

pRecord = (T_GRPRECORD *)pxcThis->Container()->Fill(
pRecord, szString);

iCount++;

fclose(hFile);

II Perform the container insertion
pxcThis->Container()->Insert(0, pFirstRecord, iCount);

LISTING AVAILABLE GROUPS 427

428

II Sort the records
pxcThis->Container()->Sort(SortGroupByAlpha);

11 Tell the user how many groups there are
11
in . the list

pxcThi s->Status (}->Text ("%d Groups 1 oaded , l Count) ;
}
II Terminate the thread
pxcThread->TerminateThread();

The last window message handler we will look at for C_ WINDOW _GRO~
is the MsgClose() method called by the window manage: to clo~e the gr?uP. win
dow. The code should be relatively obvious; the only thing I will me:11tion is ~e
presence of a line to send a message back to the news contr?l panel window. This
PM_ GROUP _CLOSE message simply notifies the owner window that the groups
window no longer exists.

11----------
11 MsgClose \ -----------------------11--
II Event: WM_CLOSE .
II Cause: Issued by OS when window lS closed

II
void *C_WINDOW_GROUP::MsgClose(void *mpl, void *mp2
{

char szSt ring [80] ;
int iX;
int iY;
int iW;
int il;
BYTE byR;
BYTE byG;
BYTE byB;

II Get all the savable parameters
GetSizePosition(&iX, &iY, &iW, &il);

II Save parameters into the INI file
c IN! USER xclni("BookNews");
xclni-:-Open();

II Save the window dimensions
sprintf(szString, "%d", iX);
xclni.Write("GroupX", szString);
sprintf(szString, "%d", iY);
xclni.Write("GroupY", szString);
sprintf(szString, "%d", iW);
xclni.Write("GroupW", szString);

A SIMPLE NEWS CLIENT I CHAPTER 10

sprintf(szString, "%d", il);
xclni.Write("Groupl", szString);

II Save the font
pxcCont->GetFont(szString);
if(strstr(szString, "."))
{

xclni.Write("GroupFont", strstr(szString,
*strstr(szString, ".") = O;
xclni.Write("GroupFontSize", szString };

If II) + 1) ;

II Save the window foreground color
pxcCont->GetForegroundColor(&byR, &byG, &byB);
sprintf(szString, "%03d,%03d,%03d", byR, byG, byB);
xclni.Write("GroupFColor", szString);

II Save the window background color
pxcCont->GetBackgroundColor(&byR, &byG, &byB);
sprintf(szString, "%03d,%03d,%03d", byR, byG, byB) ;
xclni.Write("GroupBColor", szString);
xclni .Close();

II Kill any threads we own that are still running
xcPopulateThread.Kill{);

II Commit suicide
Destroy();

II Tell the parent that the user told us to shut down. Our parent will
II clean up our mess (i.e. call our destructor)
pxcParent->PostMsg(PM_GROUP_CLOSE, 0, 0);

return FALSE;

The C_WINOOW_GROUP class supports two commands from the user.
The first of these manages new subscriptions.

The user is free to select one or more groups from the available groups list
and subscribe to them. When the Subscribe option is selected by the user, Cmd
Subscribe() uses the FirstSelected() method in the container class to determine if
any groups have been chosen. For each selected group, this method sends a
PM_GROUP _SUBSCRIBE message to the main news window, then deselects the
item. CmdSubscribe() then uses the container method, NextSelected(), to find any
additional group selections, and repeats the subscription process, if required.

LISTING AVAILABLE GROUPS 429

430

11--------------
11 CmdSubscribe \ ------------------------------------11---------------------------------------
II Event· OM SUBSCRIBE

C · User selects the subscribe option from the toolbar or menu
llj o:~~~~ption:This method subscribes to all the cur~ently highlighted

container items. It does this by sending a PM_SUBSCRIBE
jj message to its parent window (the news control panel).

~~id *C_WINDOW_GROUP::CmdSubscribe(void *mpl, void *mp2)
{

T GRPRECORD *pRecord;

II Get the first selected record in the list
pRecord = (T_GRPRECORD *)pxcCont->FirstSelected();
while(pRecord)
{

pxcLog->Write("pRecord = %s", pRecord->szString);

II Tell our parent that the user wants to subscribe to this gr~up
t S dM (PM GROUP SUBSCRIBE (void *)pRecord->szString, 0); pxcParen -> en sg _ _ •

II Unselect as we go so the user knows something is happening
pxcCont->SelectRecord(pRecord, FALSE);

II Go to the next record
pRecord = (T_GRPRECORD *)pxcCont->NextSelected(pRecord);

return FALSE;

The second command handler is responsible for refreshing the ~rou~ list.
CmdRefresh() removes any existing GROUPS.GRP file .. Then, by .issuing 0~ PM POPULATE message to the message manager for the instance, this meth
forc~s the list to be retrieved from the server.

11------------
jj_=~~~~:~~~-~--
II Event: OM REFRESH II cause: User selects the refresh option from the tool~ar or menu
II Description:This method removes the gr~up file from the disk and forces
II the news server to resend it.

~~id *C_WINDOW_GROUP::CmdRefresh(void *mpl, void *mp2)
{

A SIMPLE NEWS CLIENT I CHAPTER 10

II Force the groups file to go away
DosForceDelete("groups.grp") ;

II Say that we want to reload the groups from the server
PostMsg(PM_POPULATE, 0, 0);

return FALSE;

Managing News Subscriptions

In this section, we will add the code for the subscription window to news. This
window keeps track of what groups the user has an interest in, and displays the
number of messages in each.

Since so much of the source code for the subscription window is similar to
that found in the group window, we need only discuss a few key parts. However,
the entire source for this window can be found on the companion disk.

The message table for the C_ WINDOW _SUBSCRIPTION class is almost
identical to that shown previously for C_WINDOW _GROUP.

11-----------------------------------
11 Subscription Window Message Table\
11---
DECLARE_MSG_TABLE(xtMsgSubscription)

DECLARE MSG(PM CREATE, C WINDOW SUBSCRIPTION::MsgCreate)
DECLARE-MSG(PM-PARENT, C-WINDOW-SUBSCRIPTION::MsgParent)
DECLARE=MSG(PM=POPULATE, C=WINDOW=SUBSCRIPTION::MsgPopulate)
DECLARE_MSG(PM_SUB_SUBSCRIBE, C_WINDOW_SUBSCRIPTION::MsgSubSubscribe)
DECLARE_MSG(WM_CLOSE, C_WINDOW_SUBSCRIPTION::MsgClose)
DECLARE_MSG(WM_SIZE, C_WINDOW_SUBSCRIPTION::MsgSize)
DECLARE MSG(WM CONTROL, C WINDOW SUBSCRIPTION::MsgControl
DECLARE=MSG(WM=PAINT, C=WINDOW=STD::MsgPaint)

END MSG TABLE

The command table for the class includes two entries. The function of both
of these methods is described later in this section.

11-----------------------------------
11 Subscription Window Command Table\
11---
DECLARE COMMAND TABLE(xtCommandSub)

DECLARE_COMMAND(DM_SUB_UNSUBSCRIBE,
C WINDOW SUBSCRIPTION::CmdSubUnsubscribe)

DECLARE COMMAND(OM SUB READ,CWINDOW SUBSCRIPTION::CmdSubRead)
END_MSG_TABLE - - - -

MANAGING NEWS SUBSCRIPTIONS 431

432

The constructor and destructor for C_ WINDOW _SUBSCRIBE are identical

to those outlined for the groups window. The MsgPopulate() message handler is

also similar, so I won't go into any further detail for it either, except to note that it

loads the subscription window's container by starting the PopulateSubscription

Thread() function on a separate thread of execution.

PopulateSubscriptionThread() loads the contents of the GROUPS.SUB file

into the container window, and does so in a manner similar to the technique used

for loading the list of available groups. Once each record is loaded and displayed,

this thread scans each group and, with the help of the server, populates the total

number of articles stored in each newsgroup.

The code establishes a connection with the connection manager layer, and

then issues a GROUP command to the server to fetch the total number of articles.

This value is stored in the record for each group, and the container window is

updated.

11----------------
11 PopulateThread \

11--

11
II Description:
II This thread function is used to populate the subscription window

II container. It loads data from the subscription file, parses it, and

II writes it to the container window.

II
void _Optlink PopulateSubscriptionThread(void *pvData)

{
C_WINDOW_SUBSCRIPTION*pxcThis;

C THREAD PM *pxcThread;

char - szString[1024];

FILE *hFile;

int
int
T SUBRECORD
T SUBRECORD
UL ONG
ULONG
ULONG

iConnection;
iCount;
*pFirstRecord;
*pRecord;
lFirst;
l Last;
lTotal;

II Get a point to the main window object

pxcThread = (C_THREAD_PM *)pvData;

pxcThis = (C_WINDOW_SUBSCRIPTION *)pxcThread->ThreadData();

II Create a PM process for this thread

pxcThread->InitializeThread();

II Remove any previous data because this could be an update

pxcThis->Container()->RemoveAll();

A SIMPLE NEWS CLIENT I CHAPTER 10

II The first thing we need to do i's d t . th

II
e ermine e number of

supported groups
iCount = O;

hFile = fopen("groups.sub", "rt");
if(hFile)
{

~hile(!feof(hFile) && fgets(szString, 1024, hFile))

II Found a subscription
iCount++;

fclose(hFile);

pxcLog->Write("SUBS: i Count =%d" • i Count) ;

II Insert groups if there are any
if(iCount > o)
{

~~i~~~~~;!;ds~me container s~ace, b~t keep track of where it starts

(T_SUBRECORD)pxcThis->Container()->Allocate(

pRecord = pFirstRecord; sizeof(T_SUBRECORD), (USHORT)iCount);

,/_Now insert each supported record into the container

File= fopen("groups.sub", "rt")·

~hile(!feof(hFile) && fgets(szS~ring, 1024, hFile)

II Get rid of any CRILF
if(strstr(szString, "\r"))

*strstr(szString, "\r") = O,·
if(strstr(szString, "\n"))

*strstr(szString, "\n") = O;

// Insert
pRecord =

this record

(T_SUBRECORD *)pxcThis->Container()->Fill(

pRecord, szString);

fclose(hFile);

II Perform the container insertion

pxcThis->Container()->Insert(0, pFirstRecord, iCount);

II Re~raw the container to show the subscriptions

pxcThis->Container()->Redraw(0);

II Get a network connection

iConnection = pxcMgr->Connect();

MANAGING NEWS SUBSCRIPTIONS 433

434

if(iConnection >= O)
{

II Update the group infonnation
pRecord = (T_SUBRECORD *)pxcThis->Container()->FirstRecord();

while(pRecord)
{

II Get the group infonnation and article status

pxcMgr->Connection(iConnection)->Group(
pRecord->szGroup, &lFirst, &lLast, &lTotal);

II Update the record and redraw it
sprintf(pRecord->szTotal, "%ld", lTotal) ;

pxcThis->Container()->Redraw(pRecord);

II Step to the next record
pRecord = (T SUBRECORD *)pxcThis->

- Container()->NextRecord(pRecord);

II Free up the network connection
pxcMgr->Disconnect(iConnection);

II Tenninate the thread
pxcThread->TenninateThread();

The other thread implemented in the subscription window code manages

removal of groups from the subscription window. Users may wish to stop reading

a group, so the subscription window provides an "Unsubscribe" capability that

triggers the UnsubscribeThread() function to be executed on a separate thread.

This code scans the subscription container and removes the desired group.

It then rewrites the GROUPS.SUB subscription file to exclude the removed group.

11-------------------
11 UnsubscribeThread \

11---
11
II Description:
II This thread is responsible for unsubscribing to newsgroups. It

II removes the group(s) from the subscription container and rewrites

II the groups.sub subscription file.

II
void _Optlink UnsubscribeThread(void *pvData)

{
C_WINDOW_SUBSCRIPTION
C_THREAD_PM

*pxcThis;
*pxcThread;

A SIMPLE NEWS CLIENT I CHAPTER 10

FILE
T_SUBRECORD
T_SUBRECORD

*hFil e;
*pRecord;
*pNext;

II Get a point to the main window object
pxcThread = (C_THREAD_PM *)pvData;

pxcThis = (C_WINDOW_SUBSCRIPTION *)pxcThread->ThreadData();

II Create a PM process for this thread
pxcThread->InitializeThread();

II Update the group information

pR~cord = (T_SUBRECORD *)pxcThis->Container()->FirstSelected();
while(pRecord)
{

II Get the next record

pNext = (T_SUBRECORD *)pxcThis->Container()->NextSelected(pRecord);

II Remove the record
pxcThis->Container()->Remove(pRecord);

II Set the current record equal to the next
pRecord = pNext;

II Refresh the container view
pxcThis->Container()->Redraw(O);

II Look for the first container item

~Record= (T_SUBRECORD *)pxcThis->Container()->FirstRecord()·
if(pRecord) '

{

II Update the subscription file
hFile = fopen("groups.sub", "wt");
if(hFile)
{

II Loop to every subscription in the container
while(pRecord)
{

II Write the item to the subscription file

fprintf(hFile, "%s\n", pRecord->szGroup);

II Get the next record
pRecord = (T_SUBRECORD *)pxcThis->Container()->

NextRecord(pRecord);

fclose(hFile);

MANAGING NEWS SUBSCRIPTIONS 435

436

else
{

II No records left, so clean up the file
DosForceDelete("groups.sub");

II Terminate the thread
pxcThread->TerminateThread();

C_WINDOW_SUBSCIPfION class is also responsible for adding news
groups to the subscription list. As previously described, we know that the main
window sends a PM_SUB_SUBSCRIBE message when a new group needs to be
added to the list; the MsgSubSubscribe() manages this message.

The code first waits to ensure that the thread that populated the list is idle.
It does this by invoking a call to Waitlndefinite(), a method in the C_SEM_EVENT
class. This call points out a potential design and implementation problem.

Waiting for a semaphore is not the kind of thing you should normally do in
a message handler. In this case, there should be no problem; however, depending
on your design, the posting of the semaphore may well depend on the occurrence
of some other Presentation Manager operation. This can result in deadlocking PM
due to a violation of the 1!10 second rule. Take definite care when waiting for sema
phores while executing on the main thread of a PM program.

11-----------------
11 MsgSubSubscribe \
11---
11 Event: PM_SUB_SUBSCRIBE
II Cause: Issued by parent window when a new subscription is sent;
II mpl contains a pointer to the group string being subscribed.

II
void *C_WINDOW_SUBSCRIPTION::MsgSubSubscribe(void *mpl, void *mp2)
{

char *szGroup;
FILE *hFile;

II Wait for any current subscription update to complete
xcPopulateThread.Waitlndefinite();

II Get the group that is being subscribed
szGroup = (char *)mpl;
pxcLog->Write("PM_SUB_SUBSCRIBE:%s", szGroup);

II Write the new group to the subscription file
hFile = fopen("groups.sub", •at");
if(hFile)

A SIMPLE NEWS CLIENT I CHAPTER 10

pxcLog->Write("PM_SUB_SUBSCRIBE:Writing:%d",
fprintf(hFile, "%s\n", szGroup));
fclose(hFile);

II Repopulate the container
PostMsg(PM_POPULATE, 0, 0);

return FALSE;

I previously described the UnsubscribeThread() function. This is activated
by the CmdSubUnsubscribe() method when the user selects the "Unsubscribe"
menu item or presses the toolbar button.

11-------------------
11 CmdSubUnsubscribe \
11---11 Event: OM SUB UNSUBSCRIBE
II Cause: User selects the Unsubscribe button or menu option
II Description: This method is called any time the user wants to unsubscribe
II to newsgroup(s) . The method finds each selected item and
11 removes it from the list.
void *C_WINDOW_SUBSCRIPTION::CmdSubUnsubscribe(void *mpl, void *mp2)
{

II Begin a thread to unsubscribe all selected items
xcUnsubscribeThread.Create(UnsubscribeThread, 40000, this);

return FALSE;

The second command implemented by the C_ WINDOW _SUBSCRIPfION
class is invoked when the user double-clicks the left mouse button while the
~ous~pointer. is positioned over a group in the subscription list. Alternatively, the
Read menu item or toolbar button may be selected to execute this code.

When. CmdSubRead() is executed, it locates the first selected subscription
groups and issues a PM_SUB_READ message to the main window. This subse
quently displays a list of messages for this group in the message window. This will
be the subject of the next section.

11------------
11 CmdSubRead \
11---11 Event: OM SUB READ
II Cause: User selects the Read button or menu opt ion
II Description: This method i s called any time the user wants to read t he

MANAGING NEWS SUBSCRIPTIONS 437

438

message headers for a selected subscription. If_mo~e than
II one subscription is selected when this command is in~oked,
II the first selected subscription is used and the remainder
II . ct 11 are l gnore .

·ct *C WINDOW SUBSCRIPTION::CmdSubRead(void *mpl, void *mp2) VOl _ _

{
T SUBRECORD*pRecord;

II Get the first selected group
pRecord = (T_SUBRECORD *)pxcCont->FirstSelected();
if (pRecord)
{

II Tell the parent to display the message list
pxcParent->SendMsg(PM_SUB_READ, pRecord->szGroup, 0);

return FALSE;

Displaying Message Lists

In this section, I will briefly describe the process involved in displaying lists of
messages for newsgroups. These lists are displayed when a gr~up 1s s~lected from
the subscription window, and consist mainly of a message title an a message

number that identifies the message. . . . h
The code to accomplish this window display 1s slffillar to w~at we ave

already seen for the group and subscription windows. _Scan the followmg x:;ess~e
table used to control the message window and you will see the commona ty. e
code is so similar to previous source code that you should have few problems

understanding the program flow.

11------------------------------
11 Message Window Message Table \
11---
DECLARE MSG TABLE(xtMsgMessage)

DECLARE MSG(PM CREATE, C_WINDOW_MESSAGE::MsgCreate)
DECLARE-MSG(PM-PARENT, C_WINDOW_MESSAGE::MsgParent)
DECLARE-MSG(PM-POPULATE, C_WINDOW_MESSAGE::MsgPopulate)
DECLARE-MSG(WM-CLOSE, C_WINDOW_MESSAGE::MsgC~ose)
DECLARE-MSG(WM-SIZE, C_WINDOW_MESSAGE::MsgS1ze)
DECLARE-MSG(WM-CONTROL, C_WINDOW_MESSAGE::M~gControl
DECLARE=MSG(WM=PAINT, C WINDOW_STD::MsgPa1nt)

END_MSG_TABLE

A SIMPLE NEWS CLIENT I CHAPTER 10

11------------------------------
11 Message Window Cornnand Table\
11---
DECLARE_COMMAND_TABLE(xtCommandMsg)

DECLARE_COMMAND(DM_MSG_READ,C_WINDOW_MESSAGE::CmdMsgRead)
END MSG TABLE

There are some key features of the message list window that I will describe,
however. These features include loading of messages from the server; since there
are two different techniques for this, it is important to understand the variations.

We know, from the message diagram shown at the beginning of this chap
ter, that the main program window sends a PM_POPULATE to the message list
window when the window is created. This invokes the MsgPopulate() method,
which sets the window title to match the name of the subscription group and then
creates a thread calling PopulateMessageThread() to load the message list con
tainer with information about the articles in the newsgroup.

11-------------
11 MsgPopulate \
11---
11 Event: PM POPULATE
II Cause: Issued by the main window whenever it wants us to display a
11 new message.
II Description:This method is invoked whenever the main window wants to
II change the group for which this window is listing messages.
II The mpl parameter contains a string holding the name of the
I I new group.
II
void *C_WINDOW_MESSAGE::MsgPopulate(void *mpl, void *mp2)
{

char szString[64];

II Get the group name to populate
strcpy(szGroup, (char *)mpl);
pxcLog->Write("MESSAGE:MsgPopulate:%s", szGroup);

II Set the window title to the first 56 characters of the group name
II This is a limitation of OSl2
memset(szString, 0, 64);
strncpy(szString, szGroup, 56);
SetTitle(szString);

II Begin a thread to load the messages
xcPopulateThread.Create(PopulateMessageThread, 40000, this);

return FALSE;

DISPLAYING MESSAGE LISTS 439

440

The only other message processor I am going to mention in this chapter is

the CmdMsgRead() command handler. It is called whenever the user selects an

item from the message list indicating that the article is to be displayed for reading.

CmdMsgRead() simply starts a news thread, calling the LoadMessage

Thread() routine to load the requested message from the server and inform the

main news window that it should display the article.

11------------
11 CmdMsgRead \
11---
11 Event: DM_MSG_READ
II Cause: User selects the Read button or menu option
II Description: This method is called any time the user wants to read the

II article text for a specified message.
II If more than one message is selected when this collllland is

II invoked, the first selected subscription is used and the

II remainder are ignored.
void *C_WINDOW_MESSAGE::CmdMsgRead(void *mpl, void *mp2)
{

T_MSGRECORD*pRecord;

II Get the first selected group
pxcLog->Write("MESSAGE:CmdMsgRead:Start");
pRecord = (T_MSGRECORD *}pxcCont->FirstSelected();
if(pRecord)
{

II Start a thread to load the article
xcLoadThread.Create(LoadMessageThread, 40000, this);

pxcLog->Write("MESSAGE:CmdMsgRead:End");

return FALSE;

The message window source code includes a thread to load the message list

information from the server. PopulateMessageThread() performs similarly to the

threads used to load the groups and subscriptions shown previously, but is

required to implement some additional parsing to force the information into a for

mat desirable for our client. As was described in the C_CONNECT_NEWS code,

some servers support the XOVER command, which performs a quick load of the

messages for a given group. Some servers, however, do not implement overview

support, so a slower loading process must be used. We will look at both these load

ing techniques shortly.
The PopulateMessageThread() code attempts to load the overview by

invoking the Overview() method for the current server connection. If the process

fails to create an overview file, the code calls the SlowParse() procedure; other

wise, FastParse() is used. Once the list of messages from the server has been

parsed, they are counted and inserted into the container.

A SIMPLE NEWS CLIENT I CHAPTER 10

11-----------------------
. II PopulateMessageThread \

jj---

11 Description:

II This thread function is used to populate the message window container.

II It loads data from the message file, parses it, and writes it
II to the container window.
II
void _Optlink PopulateMessageThread(void *pvData)
{

char szString[1024];
C_WINDOW_MESSAGE *pxcThis;
C_THREAD_PM *pxcThread;
FILE *hFile;
int iCount;
int iConnection;
int iResult;
T_MSGRECORD *pRecord;
T_MSGRECORD *pFirstRecord;
ULONG lStart;
ULONG lLast;
ULONG lTotal;

II Get a point to the main window object
pxcThread = (C_THREAD_PM *}pvData;
pxcThis = (C_WINDOW_MESSAGE *}pxcThread->ThreadData();

II Create a PM process for this thread
pxcThread->InitializeThread();

II Get a network connection
iConnection = pxcMgr->Connect(};
if(iConnection >= O)
{

II Get the group information and article status
iResult = pxcMgr->Connection(iConnection)->Group(

pxcThis->Group(), &lStart, &lLast, &lTotal);
if(iResult >= 200 && iResult <= 300)
{

pxcThis->Status(}->Text("Loading Overview ... ") ;

II Try to do an overview of the messages
iResult = pxcMgr->Connection(iConnection)->Overview(

lStart, lLast, "news.ovr" };
if(iResult >= 200 && iResult < 300)
{

II Overview supported, so do a quick parse

DISPLAYING MESSAGE LISTS 441

442

iCount = pxcThis->FastParse();

else
{

II Get rid of the overview file
DosForceDelete("news.ovr");

II Overview not supported, so do the listing the slow way
iCount = pxcThis->SlowParse(iConnection, lStart, lLast);

II Free up the netwo~k conne~tion
pxcMgr->Disconnect(1Connect1on);

II Remove any previous data because this could be an update
pxcThis->Container()->RemoveAll();

II Insert groups if there are any
if(iCount > 0)
{ II Allocate some container space, but keep track of where it starts

F' tRecord = (T MSGRECORD *)pxcThis->Container()->Allocate(
p irs - sizeof(T_MSGRECORD), (USHORT)iCount);

pRecord = pFirstRecord;

II Now insert each supported record into the container
hFile = fopen("news.msg", "r"); .
while(!feof(hFile) && fgets(szString, 1024, hF1le)

{
II Get rid of any CRILF
if(strstr(szString, "\r"))

*strstr(szString, "\r") = O;
if(strstr(szString, "\n"))

*strstr(szString, "\n") = O;

II Insert this record
pRecord = (T MSGRECORD *)pxcThis->Container()-~Fill(

- pRecord, szStr1ng);

II Perform the container insertion .
pxcThis->Container()->Insert(0, pF1rstRecord, iCount);

II Redraw the container to show the subscriptions
pxcThis->Container()->Redraw(0);

fclose(hFile);

A SIMPLE NEWS CLIENT I CHAPTER 10

II Get rid of the message file
DosForceDelete("news.msg") ;

II Terminate the thread
pxcThread->TerminateThread();

As mentioned earlier, the SlowParse() routine is called whenever the news
client detects a server that does not support the XOVER server command. This
code loops for each message that must be loaded, and issues a "HEAD" command
to the server. Though the news protocol class C_CONNECT_NEWS implements a
Head() method, it writes to a disk file; in order to improve performance somewhat,
SlowParse() issues the "HEAD" command itself and reads the responses directly
into memory.

Once the command has been issued from the server, each line of the header
for the requested messages is returned from the server (even lines for which we
have no need). SlowParse() extracts the information it needs by examining the
beginning of each line. For example, if a line starts with "Subject:" then the code
determines that this is the header line containing the subject text. The output
below is an actual message header extracted from Usenet, which demonstrates
some of the fields processed by the parser.

Path: stn.ns.ca!newsflash.concordia.ca!utcsri!utnut!isnews.csc .calpoly.edu!usenet
From: gutz@hookup.net (Steven Gutz)
Newsgroups: comp.os.os2.mail-news
Subject: NeoLogic Mail program ??
Date: 8 Sep 1995 20:51:07 GMT
Organization: NeoLogic Inc.
Lines: 17
Message-ID: <42qabr$73t@hookup.net>
NNTP-Posting-Host: mailer.hookup.net
X-Newsreader: NeoLogic News for OSl2 [version: 4.3]

After each field is parsed, a new line is written to the message list file con
taining all the information displayed by the message list window. Then Slow
Parse() fetches the next message header, and the process repeats.

It is not very difficult to see why this routine is call "SlowParse." The soft
ware must read in all sorts of useless information that needs to be parsed, and
large portions of it are simply discarded. Still, until only a few years ago when
some inventive person devised a fast method (XOVER), this is how every news
reader retrieved message information from the server.

DISPLAYING MESSAGE LISTS 443

444

11-----------
11 SlowParse \
11---
11
II Description: II This method is used to load message information from servers that
II do not support the XOVER conmand. It loads the header for each message
II using the HEAD conmand and parses the information into a format that
II is acceptable to news.

II
I I Parameters:

- News connection to use for acquire II ;connection
- First message number in the range 11 lFirst
- Last message number in the range II lLast

II
11 Returns: II int - The number of messages found in the specified range.

II int C_WINDOW_MESSAGE::SlowParse(int iConnection, ULONG lFirst, ULONG lLast)

{
char szHeader[4096];
char szAuthor[256];
char szSubj ect [256] ;
char szli nes [256] ;
FILE *hFile;
int ;count;
ULONG lCtr;

iCount = O;
hFile = fopen("news.msg", "wt" };
if(hFil e)
{

II go to the first article
lCtr = lFirst;
while(lCtr <= lLast)
{

II Tell the user what's going on with the loading process
pxcStatus->Text("Loading %ld of %ld", lCtr - lFirst + 1,

lLast - lFirst + 1 };

II Get the header for the new article and return the result
sprintf(szHeader, "head %ld\r\n", lCtr };
pxcMgr->Connection(iConnection}->Send(szHeader);
pxcMgr->Connection(iConnection}->Receive(szHeader);
if(atoi(szHeader) >= 200 && atoi(szHeader) < 300)
{

II Skip the path string
pxcMgr->Connection(iConnection}->Receive(szHeader);

A SIMPLE NEWS CLIENT I CHAPTER 10

II Initial data areas
memset(szAuthor, 0, 256);
memset(szSubject, O, 256);
memset(szLines, 0, 256);

while(strcmp(szHeader, II II) ! = 0)
{

II Parse Lines
if(strncmp(szHeader, "Lines:", 6) == 0)
{

}

strncpy(szLines, szHeader + 7, 256 };
if(strstr(szLines, "\r"))

*strstr(szLines, "\r") = O;

if(strncmp(szHeader, "From:", 5) == O
{

}

strncpy(szAuthor, szHeader + 6, 256);
if(strstr(szAuthor, "\r"))

*strstr(szAuthor, "\r") = O;

if(strncmp(szHeader, "Subject:", 8) == O)
{

strncpy(szSubject, szHeader + 9, 256);
if(strstr(szSubject, "\r"))

*strstr(szSubject, "\r") = O;

pxcMgr->Connection(iConnection)->Receive(szHeader);

II Write this to the file and increment the message count
sprintf(szHeader, "%ld\t%s\t%s\t%s",

lCtr, szLines, szAuthor, szSubject };
fprintf(hFile, "%s\n", szHeader };
iCount++;

II Go to the next message
lCtr++;

fclose(hFile);

return iCount;

Of course, most servers do implement the XOVER command now, and it
offers vast improvement over the previous technique. The news client can retrieve

DISPLAYING MESSAGE LISTS 445

446

information from the server without needing to perform significant parsing, and

none of the information retrieved is generally thrown away (though the limited

news reader here does discard some data).

The FastParse() routine extracts its information from the overview file,

which has been fetched from the news server using the Over() method in the

C_CONNECT_NEWS class. This data has a known format, which was described

in Chapter 7, and field information can be extracted in a known order.

Once extracted, data is written to a message list file in a format which the

message window container recognizes.

11-----------
11 FastParse \

11--

11
11 Description:
II This method is used to load message infonnation from servers that

II do support the XOVER command. It loads the headers in overview fonnat

II and parses the information into a fonnat acceptable to news.

II
11 Parameters:
11 none
II
11 Returns:
II int - The number of messages found in the overview file.

II
int C_WINDOW_MESSAGE::FastParse(void)

{
char szSt ring [2048] ;
char szHeader[4096];
char szAuthor[256];
char szSubj ect [256];
char szL i nes [256] ;
char *szPtr;
FILE *hFile;
FILE *hinFile;
int iCount;
ULONG lCtr;

iCount = O;
hinFile = fopen("news.ovr", "rt");

if(hlnFile)
{

hFile = fopen("news.msg", "wt");

if(hFile)
{

while(!feof(hlnFile) && fgets(szString, 2048, hlnFile))

{

A SIMPLE NEWS CLIENT I QiAPTER 10

II Get rid of any CRILF
if(strstr(szString, "\r"))

*strstr(szString, "\r") = O·

if(strstr(szString, "\n")) '

*strstr(szString, "\n") = O;

II Make sure every field has a value even if it is blank

~hile(strstr(szString, "\t\t")) '

II Pad empty fields in the overview line with a space char

szPtr = strstr(szString, "\t\t") + l;

memmove(szPtr + I, szPtr, strlen(szPtr) + I)·

*szPtr = • 1 ;
'

II Initial data areas
memset(szAuthor, o, 256);
memset(szSubject, O, 256);

memset(szLines, o, 256);

II Get next message number from overview file

~zPtr = strtok(szString, "\t");
if(szPtr)

lCtr = atol(szPtr);

II Get the subject text
szPtr = strtok(NULL, "\t");
if(szPtr)
{

strncpy(szSubject, szPtr, 256);

if(strstr(szSubject, "\t"))

*strstr(szSubject, "\t") = D;

II Get the author text
szPtr = strtok(NULL, "\t");
if(szPtr)
{

strncpy(szAuthor, szPtr, 256);

if(strstr(szAuthor, "\t"))

*strstr(szAuthor, "\t") = O;

II Skip the date,Message-ID and Reference

szPtr = strtok(NULL, "\t");

szPtr = strtok(NULL, "\t");

szPtr = strtok(NULL, "\t");

szPtr = strtok(NULL, "\t");

DISPLAYING MESSAGE LISTS 447

448

II Get the Line text
szPtr = strtok(NULL, "\t");
if(szPtr)
{

strncpy(szLines, szPtr, 256);
if(strstr(szLines, "\t"))

*strstr(szLines, "\t") = O;

II Write this to the file and increment the message count
sprintf(szHeader, "%ld\t%s\t%s\t%s",

lCtr, szLines, szAuthor, szSubject);
fprintf(hFile, "%s\n", szHeader);

II Count the number of items written to the output file
iCount++;

II Close the output file
fclose(hFile);

II Close the overview file
fclose(hlnFile);

II Return the number of messages in the overview
return iCount;

The second thread of execution in the message window is responsible for
loading complete article text from the server. When the user determines that an
article should be viewed, the desired message can be selected from the list. This
initiates the LoadMessageThread(), which acquires a server connection from the
connection manager and uses the C_CONNECT_NEWS::Article() member func
tion to fetch the article into the ARTICLE.TXT file.

Once the article has been successfully loaded, LoadMessageThread() sends
a PM_MSG_READ message back to the main window to tell the program that the
article needs to be displayed.

11-------------------
11 LoadMessageThread \

11---
11
II Description:
II This thread function is used to load the text for a message into a

A SIMPLE NEWS CLIENT I CHAPTER 10

II disk file on the local system. Once loaded, the code sends a message
·II back to message to display the article in an article window.
II
void _Optlink LoadMessageThread(void *pvData)
{

C_WINDOW_MESSAGE
C THREAD PM

*pxcThis;
*pxcThread;
iConnection;
iResult;
*pRecord;
lStart;

- -
int
int
T_MSGRECORD
ULONG
ULONG
ULONG

l Last;
lTotal;

II Get a point to the main window object
pxcThread = (C_THREAD_PM *)pvData;
pxcThis = (C_WINDOW_MESSAGE *)pxcThread->ThreadData();

II Create a PM process for this thread
pxcThread->InitializeThread();

II Find out which record is selected
pRecord = (T_MSGRECORD *)pxcThis->Container()->FirstSelected{);

II Get a network connection
iConnection = pxcMgr->Connect();
if(iConnection >= 0)
{

II Get the group information and article status
iResult = pxcMgr->Connection(iConnection)->Group(

pxcThis->Group(), &lStart, &lLast, &lTotal);
if(iResult >= 200 && iResult <= 300)
{

pxcThis->Status()->Text("Loading Article ... ");

II Try to load the article
iResult = pxcMgr->Connection(iConnection)->Article(

atol(pRecord->szNumber), "article.txt");
if(iResult >= 200 && iResult < 300)
{

II Tell the parent to create an article window for this.
pxcThis->Parent()->SendMsg(PM MSG READ,

(void*)"article.txt", o);

II Free up the network connection
pxcMgr->Disconnect(iConnection);

DISPLAYING MESSAGE LISTS 449

450

II Tenninate the thread
pxcThread->TerminateThread();

As with the code shown in the previous sections, we need not review much

of this code as it is similar to what has already been described. The complete

source for the message window is included in the companion disk.

Viewing Articles

In this section, I will describe how article text is displayed so the user can read it.

However, I am going to show you only two routines from the article code.

We have already seen most of the article code in other places. The article

window uses a multiline edit control to display information, and the code for this

is remarkably like that we have seen for the Enhanced System Editor in Chapter 8.

In fact, the editor actually implements far more capabilities than the article win

dow does, and you may want to transfer some of that code into this source if you

are planning to enhance news. For example, the news article window does not

implement clipboard operations for copying and pasting text, nor does it offer any

way of saving articles to a permanent disk file.
The editor, however, implements all of this and more, and you should be

able to transfer those features to the article window with some simple cut-and

paste. I wanted to keep the viewer as simple as possible, so I deliberately left out

these features.
When the user selects an item from the message list window, the main news

window creates a new instance of an article window and issues a PM_POPULATE

message to the new window. This executes the MsgPopulate() method in the arti

cle code, which simply starts a new thread to load the possibly large message into

the article viewer's multiline edit control.

11-------------
11 MsgPopulate \

11---
11 Event: PM POPULATE
II Cause: Issued by OS during the initial creation of the group window

II
II This method populates the container object within the group window. Since

II this is a time-consuming task, it will be done on a separate PM thread.

II
void *C_WINDOW_ARTICLE::MsgPopulate(void *mpl, void *mp2)
{

II Get the filename we're supposed to load
strcpy(szArticle, (char *)mpl);

II Begin a thread to load the article text

A SIMPLE NEWS CLIENT I CHAPTER 10

xcPopulateThread.Create(PopulateArticleThread, 40000, this);

return FALSE;

The PopulateThread() thread function loads text from the ARTICLE.TXT

file into the MLE. This is almost exactly the same as the code used in the Enhanced
System Editor in Chapter 8.

11----------------
11 PopulateThread \

11---11
II Description:
II This thread function loads the article window's MLE control with the
II text from the message file.
II
void _Optlink PopulateArticleThread(void *pvData)
{

C_WINDOW_ARTICLE
C THREAD PM - -

*pxcThis;
*pxcThread;

/I Get a point to the main window object
pxcThread = (C_THREAD_PM *)pvData;
pxcThis = (C_WINDOW_ARTICLE *)pxcThread->ThreadData();

II Create a PM process for this thread
pxcThread->InitializeThread():

II Load the multiline editor with the article file
pxcThis->MLE()->Load(pxcThis->Status(), pxcThis->Article());

II Terminate the thread
pxcThread->TenninateThread();

What's Missing?

This news reader application is naturally limited in features and scope. In this sec

tion: I will quickly overview some of the missing components; in many cases, I will

outline some possible solutions to fill these voids. The point of this exercise is to

give yo.u enough knowledge of the weaknesses of this program so that you can

extend it to meet your own specific needs. If you are looking for features to add, an

excellent place to look is in other news reader applications. Do not limit your

search to OS/2 readers-there are many excellent readers available on the Win

dows and UNIX platforms that offer comprehensive feature sets.

WHAT'S MISSING? 451

452

The first and most obvious limitation of this client is the lack of posting

capability. The current news application is limited to reading new~ articles ?nly.

Virtually all commercial and shareware news readers allow the creation of articles,

which are submitted to Usenet via the news server.

Many of the newsgroups supported on Usenet carry binary files encrypted

in ASCII text form. This encryption is normally achieved through the use of a

uuencode program. Many news readers supply the capability of reversing the

encoding process to extract the binary information, allowing users to store this

information on their own systems. An easy solution to allow support for binary

files is to load the articles and then transparently start a uudecode program. There

are many flavors of uudecode available as freeware or shareware, any of which

will suit the task.
One final notable omission from news and other applications in this book is

the capability of printing information to an output device, such as an ink jet or

laser printer. I will not be discussing printing capability because it is beyond the

scope of this book; however, there are several excellent sources of information

regarding printing. One particularly useful source are the sample programs avail

able in the OS/2 Programmer's Toolkit. One of these programs describes, in detail,

the selection of print queues and page formatting. A more advanced news reader

application should permit the user to print articles in a paged output format. With

out this capability, the program becomes almost useless.

There are, of course, many other limitations to the news reader presented

here, but I will leave it as an exercise for you to determine what features you deem

important. The object-oriented approach used in the current implementation

should permit significant enhancement without the existing code hindering your

planned extensions.

Dealing with Code Inefficiency

Many times throughout this chapter I noted that I was omitting parts of the source

because they were similar to code found in some other class. If you are a real

object-oriented programming guru, then you have to be asking some questions

about the efficiency of this. Duplication of code is not supposed to occur when

building C++ applications. So I thought it prudent to take some time to justify this

extra code, and to offer up a possible alternative object hierarchy to eliminate all

this extra code.
I implemented a lot of identical code in each object in order to keep the

number of objects to a minimum. By expanding on the number of classes, it is pos

sible to simplify the coding; however, it does tend to complicate the design. I did

not want to confuse new C++ programmers reading this book with a lot of very

tight objects.
However, there is one possible solution to help eliminate as much as 40% of

the code in the new application, simply by adding some additional objects. If you

A SIMPLE NEWS CLIENT I CHAPTER 10

look at each of the window objects present in this chapter, you will note that all of

them implement certain functions. So why not create an intermediate class that

implements this common code once, and derive the window classes from it?

The C_ WINOOW _NEWS class is derived from C_ WINOOW _STD in the

PMCLASS library. The new class contains all the code that has been duplicated in

each of the existing classes-for example, the MsgParent() method, or the code

used to read and write state information to the INI file. Much of the existing code

can be pushed up into this new class and eliminated from the classes we have
already seen.

Adding this one simple class can reduce the size of the code significantly;

though the v~lue of this is questionable in such a small application, if you plan to

expand on this program, you may want to consider implementing this additional

class as w~ll as any other classes that either reduce the complexity of the design or

~e code 1~elf. If you are building commercial applications, fewer lines equate

directly with few bugs. Maintenance is a very real cost that must be factored into

any commercial design, and if you can increase the code efficiency by even a few

lines, maintainability will improve.

Chapter Summary

!11.this chapter, we have built a limited but functional NNTP news reader. Though

it is not nearly. as complete as a typical user would require, it can very quickly

access news articles from any of the newsgroups supported by a given server.

Of course, many other features are required to make this a more usable

application. For example, the program does not support posting new articles or

replying to existing articles, but the C_CONNECT_NEWS class in the NETCLASS

library does support these capabilities, so adding a posting feature should not be

very difficult. With a little work, the application presented in this chapter can be

~xt~nded to somet~g functional enough for typical users. The purpose of this

hm1ted news reader is to demonstrate how to interface an advanced Presentation

Manage~ application to TCP/IP and the Internet. To that end, the program should

be functional enough to show you how to build a more advanced networking

application.

CHAPTER SUMMARY 453

In this chapter

./ Implementing a limited FTP application

.I Adding main window controls

./ Suggested FTP enhancements

Goals for the FTP Client Application

A Basic FTP Clien

Without a doubt, FTP is one of the most popular TCP/IP applications, rivaled only
recently by Web browsers. FTP permits file transfer from one system to another at
relatively high speeds, and is a great way to distribute shareware and freeware
applications around the world. Anyone who owns OS/2 Warp V3.0 already owns
a copy of two useful FTP applications, one for text mode use ai:id one for P~ese:11ta
tion Manager. There are a number of shareware and commercial FTP applications
available which, for the most part, are great improvements over the programs

shipped with Warp. .
In this chapter, we will develop our own limited, but usable, FTP applica-

tion that implements most of the commands described by RFC 959. The goal is to
create an application that will help you to understand how FTP clients work, ~d
allow you to modify the application to suit your own needs. If you are familiar
with the command line FTP program, you will know about commands like DEL,
CD, or GET. These commands are not defined by the RFC; rather they have been
implemented as part of a command parser within the many FTP applications.

The FTP application presented here does not provide a parser to interpret
standard client commands. Instead, its command set is that specified by the RFC,
with only one or two additions. This client uses commands like DELE, CWD, and
RETR rather than those from the typical FTP client command set; you can refer to
RFC 959 for details on the commands and their syntax. Furthermore, a typical FTP
application automatically prompts the user for a user name and password, while

454

. the FTP client in this chapter does not. The user must consciously enter a USER
command, followed by a PASS command, after a connection has been established .

. These limitations notwithstanding, the application presented in this chap
ter is powerful enough to do almost anything that the command FTP can do, with
the exception of passive mode FTP. It can transfer files between the client and a
specified host, and it can perform basic directory manipulation. It also does this
within a Present~tion Manager interface, which adds a certain flavor to the pro
gram not found m the text-mode FTP client. For example, since the whole session
is writte~ to _a ~~tiline edit control, the user can scroll back to the beginning of the
FTP session if 1t 1s necessary to refer to a previous command response.

Figure 11-1 illustrates a sample session from the FTP client developed in this
chapter. The large multiline editor window contains the session display, showing
the commands from the user and the responses from the server. At the bottom of
the application window is an edit line where FTP commands are entered and a but
ton used to send the commands to the server. The application also implements a
toolbar, but. I have not provided code for the lone button it contains. It is my hope
that you will extend this application to suit your own needs. For example, you
may want to add a toolbar button to set a new server address or to toggle the trans
fer mode between ASCII and binary.

220 Neologlc FTP Server Version 1.0. Ready for new user.
USER root
331 Password required for root.
PASS root
230- User root logged In.
230 User root logged In. Access restrictions apply.
PORT 127.0.0.1.4.21
200 Port co1111&nd ok.
LIST *· txt
150 Opening ascll 1111de data connect ion for "F: \zip*. txt".
111111
-rw-rw- 217091 Aug 25 08:01 OOlndex.txt
-rw-rw- 8995 Sep 02 09:44 DRAFT.TXT
-rw-rw- 8995 Sep 03 10:16 DRAFT2.TXT
226 Data Transfer complete.
I

Figure 11 ·1 FTP sample program output

GOALS FOR THE Ff P CLIENT APPLICATION 455

456

Coding the FTP Client

We've examined almost all the code in this application in the other programs in

this book in one form or another. The complicated parts of this program are con

tained in the FfP network interface, shown in Chapter 7. For the most part, this

application is the "glue" code to stick several objects together.

All of the FfP code is contained in a single file; if you study the FfP.CPP file

you will see that this code is quite short. Compare this to the source for the text

mode FTP, which can be obtained from many sources on the Internet, and you will

notice that the code in this chapter is much more straightforward.

Looking at the message table for the C_ WINDOW _MAIN class, you will

see only six message handlers; of these, only PM_CONNECT is new. The other

handlers are similar to those implemented in the news and Ping applications.

11---------------------------
11 Main Window Message Table \

11---
DECLARE_MSG_TABLE(xtMsgMain)

DECLARE_MSG(PM_CREATE,
DECLARE MSG(WM CLOSE,
DECLARE-MSG(WM-SIZE,
DECLARE=MSG(WM=CONTROL,
DECLARE_MSG(PM_CONNECT,
DECLARE_MSG(WM_PAINT,

END MSG TABLE

C_WINDOW_MAIN::MsgCreate)
C_WINDOW_MAIN::MsgClose)
C_WINDOW_MAIN::MsgSize)
C_WINDOW_MAIN::MsgControl
C_WINDOW_MAIN::MsgConnect)
C_WINDOW_STD::MsgPaint)

The command table for the main FfP window object is also fairly simple. It

implements a handler for the "Enter" button in order to send the user entered

command to the server. The exit and product information handlers are almost

duplicates of those used in the Ping application from Chapter 8.

11---------------------------
11 Main Window Command Table\

11---
DECLARE COMMAND TABLE(xtCommandMain)

DECLARE COMMAND(ID ENTERBUTTON,
DECLARE-COMMAND(OM-EXIT,
DECLARE=COMMAND(DM=INFO,

END MSG TABLE

C_WINDOW_MAIN::CmdCommand)
C_WINDOW_MAIN::CmdExit)
C_WINDOW_MAIN::CmdHelpinfo)

The constructor and destructor codes for the C_ WINOOW _MAIN class

should be familiar, since they are almost complete duplicates of the same methods

in the news application. The constructor initializes the child classes and the com

mand and message tables. The destructor frees up the dynamic memory allocated

by these objects when C_ WINDOW _MAIN was created.

A BASIC FTP CLIENT I CHAPTER 11

11-------------
11 Constructor \
11---II
II Description:

II This constructor initializes the main window class for the editor.

II It zeroes the class attributes and sets up the command handler and

II server address.
II
11 Parameters:
II szServer - Address of the news server

II
~-WINDOW_MAIN::C_WINDOW_MAIN(void) : C_WINDOW_STD(xtMsgMain)

II Initialize all child objects
pxcTBar = O;
pxcStatus = O;
pxcConsole = O;
pxcCommand = O;

II Enable the required command handler for this window

CommandTable(xtCommandMain);

II Set the server address
strcpy(szServerAddress, "");

11-------------
11 Destructor\

jj---

11 Description:

II The dest~uctor frees up all of the dynamically allocated objects

II and attributes used by this instance.

II
C_WINDOW_MAIN::-C WINDOW MAIN(void)
{ - -

pxcLog->Wri te ("-C _WINDOW _MAIN: Start") ;

II Free up dynamic window space.
delete pxcTBar;
delete pxcStatus;
delete pxcConsole;
delete pxcCommand;
delete pxcEnterButton;

pxcLog->Write("-C_WINDOW_MAIN:End") ;

CODING THE FTP CLIENT 457

458

The main() routine for the FTP application registers the main window

instance and configures it as a standard PM application window, including a title,

a menu, and the normal buttons for minimizing and maximizing the window.

void main(int argc, char *argv[]
{

II Create a debugging log file
pxcLog = (C_LOG *)new C_LOG("ftp. log", 1) ;
pxcLog->Open();

II Register the application window
xcWindow.Register("OSl2 FTP•);
xcWindow.WCF SizingBorder();
xcWindow.WCF-SysMenu();
xcWindow.WCF-TaskList();
xcWindow.WCF-ShellPosition();
xcWindow.WCF-MinButton();
xcWindow.WCF=MaxButton();
xcWindow.WCF_Icon();
xcWindow.WCF Menu();
xcWindow.WCF-TitleBar();
xcWindow.Create(ID_WINDOW, "OSl2 FTP") ;

II Set the news server
xcWindow.SetServer(argv[l]);

II Start the message loop
xcApp.Run();

II Close and free the debug log
pxcLog->Write("FTP:Closing Log") ;
pxcLog->Close();
de 1 ete pxc Log;

The SetServer() method is called only from the main() routine; it sets the

server address that was specified by the user on the command line at run time. Set

Server() sets the szServerAddress attribute, and then sets the title of the applica

tion window to indicate the name of the server to which it is attached.

11-----------
11 SetServer \
11---
11
11 Description:
II This method sets the news server specified by the user on the corrmand
II line when the application was started

II

A BASIC FTP CLIENT I CHAPTER 11

11 Parameters:
'I I szServer - Address of news server
II
void C_WINDOW_MAIN::SetServer(char *szServer)
{

II Set the server address
strcpy(szServerAddress, szServer);

II Set the window title
SetTitle(szServer);

The MsgCreate() is called with the PM_ CREATE message, as it is for every

other application in this book. This method creates the MLE, edit line, and "Enter"

button controls, as well as the status line and toolbar windows. The final line of

code in MsgCreate() starts a new· thread of execution to establish a connection to
the selected FTP server.

11-----------
11 MsgCreate \

11---11 Event: WM CREATE
II Cause: Issued by OS when window is created
II Description:This method gets called when the window is initially created.

II It initializes all of the visual aspects of the class.

II
void *C_WINDOW_MAIN::MsgCreate(void *mpl, void *mp2)
{

char szX[lO];
char szY [10];
char szW[lO];
char szL[lO];
char szFont[80];
char szFontSi ze[lO];
char szBCo 1 or [80] ;
char sz FCo 1 or [80] ;

II Create a status bar to display miscellaneous data
pxcStatus = (C_STATUS *) new C_STATUS(this);

II Create a toolbar control
pxcTBar = (C_TOOLBAR_TOP *)new C_TOOLBAR_TOP(this, pxcStatus);

II Create a multiline edit control for the console window
pxcConsole = (C_MLE *)new C_MLE(this, ID_CONSOLE);

CODING THE FTP CLIENT 459

460

II Create a comnand entry window
pxcComnand = (C_EDIT *)new C_EDIT(this, ID_COMMAND);
pxcComnand->SetText{ "");

pxcEnterButton = (C_PUSHBUTTON *)new C_PUSHBUTTON(this,
ID_ENTERBUTTON, 0, "Enter") ;

II Load parameters out of the IN! file
C !NI USER xclni("BookFTP");
xclni-:-Open();
xclni.Read("MainX", szX, "0", 10);
xclni.Read("MainY", szY, "0", 10);
xclni.Read("MainW", szW, "100", 10);
xclni.Read("MainL", szL, "100", 10);
xclni.Read("ConsoleFont", szFont, "System Monospaced", 80);
xclni.Read("ConsoleFontSize", szFontSize, "10", 80);
xclni.Read("ConsoleBColor", szBColor, "000,000,000", 80);
xclni.Read("ConsoleFColor", szFColor, "255,255,255", 80);
xclni.Close();

II Set the font in the MLE
pxcConsole->SetFont(szFont, atoi(szFontSize));

II Set the MLE colors
pxcConsole->SetForegroundColor(atoi(&szFColor[O]),

atoi(&szFColor[4]), atoi(&szFColor[8]));
pxcConsole->SetBackgroundColor(atoi(&szBColor[O]),

atoi(&szBColor[4]), atoi(&szBColor[8]));

II Make the window look like a control panel
SetSizePosition(atoi(szX), atoi(szY), atoi(szW), atoi(szL));

II Make the window visible
Show();

II Prevent the user from entering comnands until we're ready
pxcEnterButton->Enable(FALSE);

II Start a thread to connect to the server
xcConnectThread.Create(ConnectThread, 40000, this);

return FALSE;

A BASIC FTP CLIENT I CHAPTER 11

Creating FTP Connections

The ConnectThread() creates an instance of a C_CONNECT_FTP object and opens
the connection. Once the connection is established, the thread issues a
PM_CONNECT message to the main window. Note that this code performs no
error checking-if you are developing an application for a typical user then this is
a very dangerous prospect, and you should avoid it. I didn't want to confound the
connection code with a lot of error checking since I wanted to produce code that
was as obvious as I could make it.

11---------------
11 ConnectThread \
11---
11
11 Description:
II This thread function creates a connection to the news server. If
II successful, it sends a PM_CONNECT message back to the main window class.
II
void _Optlink ConnectThread(void *pvData)
{

C_WINDOW_MAIN *pxcThis;
C THREAD PM *pxcThread;

II Get a point to the main window object
pxcThread = (C THREAD PM *)pvData;
pxcThis = (C_WINDOW_MAIN *)pxcThread->ThreadData();

II Create a PM process for this thread
pxcThread->InitializeThread();

pxcThi s->Status ()->Text ("Connecting to %s ... ", pxcThi s->ServerAddress ()) ;

II Create a instance of an FTP connection
pxcThis->pxcConnection = (C_CONNECT_FTP *)new C_CONNECT_FTP(

pxcThis->ServerAddress(), D_FTP_PORT, pxcThis->Console());

II Open a connection to the server
pxcThis->pxcConnection->Open();

II Send a connect message to the main window
pxcThis->PostMsg(PM_CONNECT, 0, 0);

II Terminate the thread
pxcThread->TerminateThread();

CREATING FTP CONNECTIONS 461

462

The PM_ CONNECT message invokes MsgConnect(). This method enables
the "Enter" button, which is normally disabled during network processing. This
prevents the user from entering a new Ff P command while the current command
is being processed.

11------------
11 MsgConnect \
11---
11 Event: PM_CONNECT
II Cause: Issued by the connection thread when a connect is completed

II
void *C_WINDOW_MAIN::MsgConnect(void *mpl, void *mp2)
{

II We are ready to accept conmands so enable the "ENTER" button
pxcEnterButton->Enable(TRUE);

return FALSE;

Processing FTP Commands

When the user presses the "Enter" button, Presentation Manager generates a
WM_ COMMAND message containing the ID_ENTERBUITON command, which
in turn invokes the CmdCommand() method. CmdCommand() first disables the
"Enter" button to prevent further commands being issued by the user. It then
starts a new thread of execution to process the FTP command typed by the user.

11---------
11 CmdCommand \
11---
11 Event: ID_ENTERCOMMAND
II Cause: User presses the ENTER button on the main window

II
void *C_WINDOW_MAIN::CmdConmand(void *mpl, void *mp2)
{

II Disable the button to prevent corrmands from being entered
II during processing
pxcEnterButton->Enable(FALSE);

II Start a thread to connect to the server
xcParseThread.Create(InterpretFTPConmand, 40000, this);

return FALSE;

A BASIC FTP CLIENT I CHAPTER 11

The InterpretFTPCommand() thread function extracts the user enter com-
. mand line from the edit control in the main window. The routine breaks this text
up into a command and an option string. The command is compared to each of the
supported FTP commands and, when a match is found, the appropriate
C_CONNECT_FTP method is started.

The current code uses a long series of "if" statements which are adequate
for the demonstration purposes of this application; however, if you are building a
complete FTP client, you may want to implement this as a lookup table instead. In
this way, adding new command support would be as simple as adding a new line
in the lookup table.

void _Optlink InterpretFTPConmand(void *pvData)
{

char
char
char
char
C WINDOW MAIN - -
C THREAD PM - -

szData [256];
szConmand [256] ;
szFTPConmand[256];
*szOption;
*pxcThis;
*pxcThread;

II Get a point to the main window object
pxcThread = (C THREAD PM *)pvData;
pxcThis = (C WINDOW MAIN *)pxcThread->ThreadData(); - -

II Create a PM process for this thread
pxcThread->InitializeThread();

II Get the contents of the edit line
pxcThis->Conmand()->GetText(szFTPCommand, 256);

II Extract the FTP command
strcpy(szConmand, szFTPCommand);
if(strstr(szConmand, " "))

*strstr(szCommand, " ") = O;

II Get the remainder of the conmand line (options)
szOption = szFTPConmand + strlen(szCorrmand);
while(isspace(*szOption))

szOption++;

II Process the FTP commands using RFC 959 style
if(strcmpi(szCommand, "SYST") == O)

pxcThis->pxcConnection->SYST();
if(strcmpi (szCommand, "SITE") == 0)

pxcThis->pxcConnection->SITE(szOption);

PROCESSING FTP COMMANDS 463

464

if(

if(

if(

if(

if(

if(

if(

if(

if(

if(

if(

if(

if(
{

strcmpi(szCommand, "ACCT") == 0)
pxcThis->pxcConnection->ACCT(szOption) ;
strcmpi (szCommand, "USER") == 0)
pxcThis->pxcConnection->USER(szOption) ;
strcmpi(szCommand, "PASS") == 0)
pxcThis->pxcConnection->PASS(szOption);
strcmpi(szCommand, "TYPE") == 0)
pxcThis->pxcConnection->TYPE(szOption);
strcmpi(szCommand, "PWD") == 0)
pxcThis->pxcConnection->PWD(szData);
strcmpi(szCommand, "CWD") == 0)
pxcThis->pxcConnection->CWD(szOption);
strcmpi (szCommand, "RMD") == 0)
pxcThis->pxcConnection->RMD(szOption);
strcmpi(szCommand, "MKD") == 0)
pxcThis->pxcConnection->MKD(szOption);
strcmpi(szCommand, "DELE") == 0)
pxcThis->pxcConnection->DELE(szOption);
strcmpi(szCommand, "DIR") == 0)
pxcThis->pxcConnection->DIR(szOption, "dir.txt") ;
strcmpi (szCommand, "RETR") == 0)
pxcThis->pxcConnection->RETR(szOption, szOption);
strcmpi(szCommand, "STOR") == 0)
pxcThis->pxcConnection->STOR(szOption,
strcmpi(szCommand, "QUIT") == 0)

II Send the QUIT command
pxcThis->pxcConnection->QUIT();

II Close the data connection
pxcThis->pxcConnection->Close();

szOption);

II Since the connection is now dead, close the application
pxcThis->PostMsg(WM_CLOSE, 0, 0);

II Re-enable the ENTER button so the user can give us another command
pxcThis->EnterButton()->Enable(TRUE);

II Reset the command buffer to a NULL
pxcThi s->Command ()->SetText (1111

) ;

II Terminate the thread
pxcThread->TerminateThread();

A BASIC FTP CLIENT I CHAPTER 11

Closing the Application

The last code we will review is. the MsgClose() method. This code stores any INI
data changes and posts the WM_ QUIT message to Presentation Manager to termi
nate the program.

11----------
11 MsgClose \
11---
11 Event: WM_CLOSE
II Cause: Issued by OS when window is closed
II
void *C_WINDOW_MAIN::MsgClose(void *mpl, void *mp2
{

char szStri ng [BO];
int iX;
int iY;
int iW;
int i L;
BYTE byR;
BYTE byG;
BYTE byB;

II Get all of the saveable parameters
GetSizePosition(&iX, &iY, &iW, &iL);

II Save parameters into the INI file
CINI USER xclni("BookFTP");
xclni-:-open();
sprintf(szString, "%d", iX);
xclni.Write("MainX", szString);
sprintf(szString, "%d", iY);
xclni.Write("MainY", szString);
sprintf(szString, "%d", iW);
xc!ni.Write("MainW", szString);
sprintf(szString, 11 %d 11

, iL);
xc!ni.Write("MainL", szString);

II Save the font
pxcConsole->GetFont(szString);
if(strstr(szString, "."))
{

xc!ni.Write("ConsoleFont", strstr(szString,
*strstr(szString, ".") = O;
xc!ni.Write("ConsoleFontSize", szString);

II Save the window foreground color

CLOSING THE APPLICATION

II II) + 1) ;

465

466

pxcConsole->GetForegroundColor(&byR, &byG, &byB);
sprintf(szString, "%03d,%03d,%03d", byR, byG, byB) ;
xclni.Write("ConsoleFColor", szString);

II Save the window background color
pxcConsole->GetBackgroundColor(&byR, &byG, &byB);
sprintf(szString, "%03d,%03d,%03d", byR, byG, byB) ;
xclni.Write("ConsoleBColor", szString);

xclni .Close();

II Debug
pxclog->Write("FTP:WM_CLOSE:Start" };

II Applcation was told to close so post a QUIT message to the OS
PostMsg(WM_QUIT, 0, 0);

II Debug
pxclog->Write("FTP:WM CLOSE:End");
return FALSE;

Possible Enhancements

As stated earlier, the FTP code presented here is very short and to the point. As
such there are many places where the program can be improved. The most obvi
ous improvement would be to implement a command set in keeping with typical
FTP clients. This should not be a large chore; the only possible difficulty you may
run into is the login process.

Normal FTP clients automatically display the "Username:" and "Pass
word:" prompts when connecting to a server. The logical procedure to accomplish
this is to create dialog box resource that can be displayed as part of the connection
process. This dialog could prompt the user to enter a user name and password,
then generate the appropriate USER and PASS commands to the FTP remote host.

If you want to do more extensive modification, you could parse the direc
tory listing retrieved from the remote host and display the items using a container
control. This involves a great deal of work, since there are many different directory
formats for which a parser would be required. This is the level of code I had to cre
ate for the initial NeoLogic FTP client; as I discovered, there are dozens of server
variations to be taken into account. However, if you adopt a logical, object-ori
ented approach, you can reuse much of the parser code for various servers.

The possible extensions are almost limitless. How about an FTP "agent"
that searches a selected list of servers and downloads any file containing a given
string? This is a pretty specific application, but it's just one of the possible applica
tions that can be written using a modified version of the FTP client code.

A BASIC FTP CLIENT I CHAPTER 11

Chapter Summary

In this ~~pt~r, I have shown a functional FTP client for TCP/IP. Though there are
many lurutations to this application, it will connect to any FTP server on the Inter
net, and allow both binary and ASCII files to be transferred from one end of the
connection to the other.

Although I have not shown all the source code for the FTP client the entire
so1:11"ce is containe.d on the companion disk, accompanied by the files ;equired to
~uild.the co~e, ~smg either the Borland or IBM compiler. I encourage you to mod
ify this application to suit your own needs, since that is the aim of this book.

• • •
I would like to congratulate you on arriving here-we've covered a lot of material
and code; I hope I have succeeded in sharing my knowledge so that you may
enhance the source code and add the extensions and modifications you desire.

~ere can this k_nowledge take you? Many developers today are well
versed m PM programmmg, but lack the experience to build TCP/IP sockets. One
of the most appealing applications for TCP/IP is gaming. With the explosion of the
Internet, Multi-~ser D~geons (MUD~), which permit two or more players to play
the same game m real time, are becommg the wildly popular.

If you are a MUD developer, you will not find much direct help in this book,
as MUDs te~d ~o be very sp~cific to the game for which they were developed.
What you will find, however, 1s the C_CONNECT class, which eliminates a lot of
the low-level networking code necessary for implementing a MUD. If you want to
develop a MUD server, you will have to be able to listen for and accept connections
from remote hosts. Though C_CONNECT does not implement these functions,
C_CONNECT_FTP does, and you should be able to adapt these routines with little
or no difficulty.

•

11

l~M is working o~ a i:'roduct called the "Entertainment Developer's Tool
kit which began appearmg m beta form on the OS/2 Developer Connection Vol
ume 8. This package includes some network interfaces specifically aimed at
network game developers. If you are developing a MUD, you may want to evalu
ate that p~ckage in lieu of using the network code developed in this book.

This book also presented a simple set of classes that wrap much of the more
common PM ~Is. Although many people have failed in accomplishing this feat,
I hope I have given you some insight into how to do this. Though these classes are
for the most part incomplete, I will continue to enhance them, and I would expect
you to do the same. If there ~re features you need or classes that you absolutely
must have and are unable to rmplement yourself, please contact me via e-mail at
nstn4064@fox.nstn.ca and we can work together to improve the libraries.

. ~y go~l. for writ~g ~s book was to make smart people smarter. I hope you
will begm writing applications for Presentation Manager and more specifically for
the Internet - the world needs more OS/2 applications, so do get going!

CHAPTER SUMMARY 467

Nonvisual Class Library Reference

C_INI ini.hpp

The C_INI class is used for persistent storage. 05/2 provides a set of functions for
reading and writing data to profiles or INI files. This class wraps the INI function
ality into a portable set of methods.

Public Constructors and Destructors

• C_INI(char *szFile, char *szAppName);

This constructor creates an instance of the C_INI class. It accepts a pointer to a filename
that is the INI file to which profile data will be written and retrieved. The szAppName
parameter points to a string containing the application name, which will be tagged
onto the INI file. This string can contain any valid string.

Public Members and Attributes

• void Open(void);

This method opens the INI file associated with the class instance.

• void Close(void);

This method closes the INI file associated with the class instance.

• void Read(char *szField, char *szData, char *szDefault, int ilength);

The Read() method accepts a field name from which data will be read. The szData
parameter points to a buffer where the data will be written. The szDefault parameter
points to a string representing the default value that will be placed in the szData buffer

469

470

if the specified field is undefined; iLength is the maximum string length that will be
inserted into szData.

• void Write(char *szField, char *szData);
This method writes the string pointed to by szData to the specified field in the INI file.

C_INl_USER ini.hpp, iniuser.hpp

The C_INI_USER class is used for persistent storage specifically in the 052.INI
file. OS/2 supports this profile specifically for user application settings. This class
is derived from C_INI.

Public Constructors and Destructors

• C_INl_USER(char *szAppName);
This constructor creates an instance of the C_INI_USER class. The szAppName
parameter points to a string containing the application name, which will be tagged into
the 052.INI file. This string can contain any valid string.

Public Members and Attributes

• void Open(void);
This method opens the 052.INI file associated with the class instance.

• void Close(void) ;
This method closes the 052.INI file associated with the class instance.

C_INl_SYSTEM ini.hpp, inisys.hpp

The C_INI_SYSTEM class is used for persistent storage specifically in the
OS2SYS.INI file. OS/2 supports this profile specifically for system application set
tings; it should not be used by applications under normal circumstances. This class
is derived from C_INI.

Public Constructors and Destructors

• C_INl_SYSTEM(char *szAppName);

This constructor creates an instance of the C_INI_SYSTEM class. The szAppName
parameter points to a string containing the application name which will be tagged into
the 052SYS.INI file. This string can contain any valid string.

Public Members and Attributes

• void Open(void) ;
This method opens the 052SYS.INI file associated with the class instance.

• void Close(void);
This method closes the OS2SYS.INI file associated with the class instance.

NONVISUAL CLASS LIBRARY REFERENCE I APPENDIX A

.C_THREAD thread.hpp

The C_THREAD class implements program threading in controlled way not nor
mally supported by OS.2. The advantage of using the C_THREAD is portability.
The NVCLASS library support two types of thread class. The C_THREAD class is
used for normal non-PM threads or for PM threads that do not require interaction
with the PM windowing system.

Public Constructors and Destructors

• C_THREAD(void);

This constructor is used typically for creating an instance of the C_THREAD class
without requiring the immediate creation of the thread itself. For instances constructed
with this void constructor, the Create() method must be subsequently called to create
the actual thread. This constructor creates a C_THREAD place holder only.

• C_THREAD(void (*ThreadFunction)(void *),unsigned int iStackSize, void *pvData);

This constructor creates an instance of the C_ THREAD class and immediately starts the
supplied thread function. The iStackSize parameter is the size of the thread stack in
bytes, and the pvData parameter contains an optional pointer to any data to be passed
into the thread function.

Public Members and Attributes

• void *ThreadData(void);

This method returns a pointer to the user defined data buffer initially passed into the
thread function. This value can be casted to the appropriate data type.

• void Create(void (*ThreadFunction)(void *),unsigned int iStackSize, void *pvData);

This method starts execution of the supplied thread function. The iStackSize parameter
is the size of the thread stack in bytes, and the pvData parameter contains an optional
pointer to any data to be passed into the thread function.

• void Kill(void);

Kill() immediately terminates execution of the thread function.

• void Waitlndefinite(void);

This method is used to flag execution of the thread. The process that created the thread
can call this method to place itself in sleep mode until the thread terminates.

C_THREAD_PM threadpm.hpp

The C_THREAD_PM class implements program threading that is specific to Pre
sentation Manager. This class will be used to create any thread which must send
messages to windows in the application. The thread function of a PM thread class
is distinguished by the creation of a message queue.

NONVISUAL CLASS LIBRARY REFERENCE 471

472

Public Constructors and Destructors

• C_THREAD_PM(void);

This constructor is used typically for creating an instance of the C_THREAD_PM class
without requiring the immediate creation of the thread itself. For instances constructed
with this void constructor, the Create() method must be subsequently called to create
the actual thread. This constructor creates a C_THREAD_PM place holder only.

• C_THREAD_PM(void (*ThreadFunction)(void *),unsigned int iStackSize, void *pvData);

This construct creates an instance of the C_THREAD_PM class, and immediately starts
the supplied thread function. The iStackSize parameter is the size of the thread stack in
bytes, and the pvData parameter contains an optional pointer to any data to be passed
into the thread function.

Public Members and Attributes

• void Initialize Thread(void);

This method must be called by the C_THREAD_PM thread function in order to create

a message queue. This should appear as the first line of code within the thread
function.

• void Terminate Thread(void);

This method must be called by the C_THREAD_PM thread function in order to destroy

the thread function's message queue. This should appear as the last line of code within
the thread function.

C_SEM_EVENT semev.hpp

The C_SEM_EVENT class wraps the event semaphore functionality supplied by
05/2 into a portable C++ class. This type of semaphore can be used to control the
synchronization of events occurring within an application.

Public Constructors and Destructors

• C_SEM_EVENT(void);

This constructor provides a default void construction mechanism. The method actually

contains no code at all, and has been provided only to adhere to convention.

Public Members and Attributes

• void Create(void);

This method creates and opens a new semaphore for use by the program. If the
semaphore does not already exist within the operating system, then this method must
be called.

• void Open(void);

This method opens a previously defined semaphore for use by the program.

NONVISUAL CLASS LIBRARY REFERENCE I APPENDIX A

• void Close(void);

This method closes a semaphore in use by the program.

• void Reset(ULONG *plPostCount);

This method resets the semaphore flag, returning a count representing the number of
times the semaphore has been posted since the last reset.

• void Post(void) ;

This method posts the semaphore flag.

• void Waitlndefinite(void) ;

This method places the current thread on "hold" until the semaphore flag gets posted.
Use this with caution, since it is possible to "hang" your application in a situation
where the current thread is waiting for a semaphore that can be posted only by code
within the same thread.

NONVISUAL CLASS LIBRARY REFERENCE 473

PM Class Library Reference

C_APPLICATION app.hpp

The C_APPLICATION class is responsible for contro~g the execution of a
PMCLASS-based program. It contains all the methods reqwred to start up and ter
minate applications, as well as containing code to return the values of system met-
rics and constants.

Public Constructors and Destructors

• C_APPLICATION(void);
Titls constructor creates an instance of the C_APPLICATION class.' It calls .the
operating system specific code to initialize the Presentation Manager display engine,
and creates a message queue for the application.

• -C APPLICATION(void);
TIU~ destructor destroys the application message queue, and shuts down the window
manager before returning control to the operating system.

Public Members and Attributes

• void Run(void) ;
Titls method starts the PM application message loop, allowing the application to begin
executing.

474

• HAS AnchorBlock(void) ;

Titls method returns a handle to the Presentation Manager specific handle to the
application anchor block. Titls HAB does not play an active role in OS/2 programs, but
has been provided to allow the implementation of "safe" applications.

• int DesktopHeight(void);

The DesktopHeight() method returns the system constant containing the pixel height
of the desktop window.

• int DesktopWidth(void);

The Desktop Width() method returns the system constant containing the pixel width of
the desktop window.

• int Menu Height(void) ;

The MenuHeight() method returns the system constant containing the pixel height of
the action menu bar used by all applications.

• int TitleBarHeight(void);

The Title Bar Height() method returns the system constant containing the pixel height of
the caption (title bar) displayed by applications running on the desktop.

• int DialogBorderHeight(void);

The DialogBorderHeight() method returns the system constant containing the pixel
height (thickness) of thick borders used when displaying dialog boxes.

C_WINDOW window.hpp

The C_ WINDOW class is the base for all other windows in the PMCLASS library.
It contains all the code common to standard application, child, and dialog win
dows.

Public Constructors and Destructors

• C_WINDOW(void);

Titls constructor initializes the window class attributes.

• C_WINDOW(T_MSG_TABLE *pxtMsg);

Titls constructor initializes the window class attributes and assigns a message table for
the window object.

• -C_WINDOW(void);

Titls destructor destroys the window object.

Public Members and Attributes

• HWN D ParentWindow(void) ;

Titls method returns a PM handle to the parent/ owner window.

PM CLASS LIBRARY REFERENCE 475

476

• void Window(HWND hNewWnd);

This method sets a PM handle to the window. This is normally done as part of the

construction process. Changing the PM window handle after the window has been

created is not recommended.

• HWND Window(void);

This method returns a PM handle to the window.

• void *SendMsg(ULONG IMsg, void *mp1, void *mp2);

This method sends a message to the window.

• void PostMsg(ULONG IMsg, void *mp1, void *mp2);

This method posts a message to the window.

• void SetText(char *szString);

This method sets the text contents for the window. This message is commonly used to

set the initial sbings for edit controls.

• void GetText(char *szString);

This method retrieves the text contents for the window.

• void Show(void) ;

This method makes the window visible.

• void Hide(void) ;

This method makes the window invisible.

• void Update(void);

This method updates the window, forcing any pending paint messages to be processed.

• void ClassName(char "szClass);

This method sets the name of the window class. This method should be called as part

of the object construction process.

• char *ClassName(void);

This method returns the name of the window class.

• void GetSizePosition(int *piX, int *piY, int *piCX, int *piCY);

This method returns the values of the X,Y location of the window, as well as the width

and height. These values are measured in pixels relative to the owner window.

• void GetSize(int *piCX, int *piCY);

This method returns the values of the width and height of the window. These values

are measured in pixels.

• void GetPosition(int *piX, int *piY);

This method returns the values of the X,Y location of the window. These values are

measured in pixels relative to the owner window.

PM CLASS LIBRARY REFERENCE I APPENDIX B

• void SetForegroundColor(BYTE byRed, BYTE byGreen, BYTE byBlue);

This method sets the foreground (text) color of the window.

• void SetBackgroundColor(BYTE byRed, BYTE byGreen, BYTE byBlue) ;

This method sets the background color of the window.

• void SetFont(char *szFont, int iSize);

This method sets the font and size of text within the window.

• void GetForegroundColor(BYTE *pbyRed, BYTE *pbyGreen, BYTE *pbyBlue);

This method returns the foreground (text) color of the window.

• void GetBackgroundColor(BYTE *pbyRed, BYTE *pbyGreen, BYTE *pbyBlue);

This method returns the background color of the window.

• void GetFont(char *szFont);

This method returns the font of text within the window. The font is returned as a sbing
with the format "size.font".

• void SetForegroundColor(BYTE byRed, BYTE byGreen, BYTE byBlue);

This method sets the foreground (text) color of the window.

• void SetBackgroundColor(BYTE byRed, BYTE byGreen, BYTE byBlue);

This method sets the background color of the window.

• void Invalidate(void);

This method causes the window to generate a paint message to force a redraw.

• void Focus (void) ;

This method forces the PM window focus to be set to the window object.

• void Register(char *szClass);

This method registers a new window class with Presentation Manager.

• void Create(HWND hFrameWnd, HWD hWnd);

This method associates the window object with the PM window, hWnd, and its owner,
hFrameWnd.

• void Destroy(void) ;

This method destroys the window.

• void Message Table(T_MSG_TABLE *pxtMsg);

This method associates the specified message table with the window object.

• void CommandTable(T_MSG_TABLE *pxtCommand);

This method associates the specified command table with the window object.

PM CLASS LIBRARY REFERENCE 477

478

C_WINDOW_STD window.hpp, winstd.hpp

The C_ WINDOW _STD class is used to create application windows. These win
dows are owned by the Workplace Shell desktop.

Public Constructors and Destructors

• C_WINDOW_STD(void);

This constructor initializes the window class attributes.

• C_WINDOW_STD(T_MSG_TABLE *pxtMsg);
This constructor initializes the window class attributes and assigns a message table for
the window object.

Public Members and Attributes

• void WCF _Standard(void);

This method sets the standard windows attributes.

• void WCF _SysMenu(void);

This method sets the system menu window attribute.

• void WCF _Menu(void);
This method sets the menu window attribute to display an application menu to the
window.

• void WCF _Icon(void) ;
This method sets the icon window attribute to add an icon to the window object.

• void WCF _MinButton(void);

This method sets the minimize button window attribute.

• void WCF _MaxButton(void);

This method sets the maximize button window attribute.

• void WCF _ TitleBar void) ;
This method sets the title bar window attribute to add a caption to the top of the
window.

• void WCF_Border(void);

This method sets the thin border window attribute.

• void WCF _DialogBorder(void);

This method sets the dialog border window attribute.

• void WCF _SizingBorder(void) ;

This method sets the sizable border window attribute.

PM CLASS LIBRARY REFERENCE I APPENDIX B

• void WCF _ShellPosition(void);

This method sets the shell position window attribute, which causes the window to be
automatically sized and positioned when it is first created.

• void WCF_Tasklist(void);

This method sets the task list window attribute, which forces the window caption to be
added to the task list window.

• void GetSizePosition(int *piX, int *piY, int *piCX, int *piCY);

This method returns the values of the X,Y location of the window, as well as the width
and height. These values are measured in pixels relative to the desktop.

• void GetSize(int *piCX, int *piCY);

This method returns the values of the width and height of the window. These values
are measured in pixels.

• void GetPosition(int *piX, int *piY);

This method returns the values of the X,Y location of the window. These values are
measured in pixels relative to the desktop.

• void SetSizePosition(int iX, int iY, int iCX, int iCY);

This method sets the values of the X,Y location of the window, as well as the width and
height. These values are measured in pixels relative to the desktop.

• void SetSize(int iCX, int iCY);

This method sets the values of the width and height of the window. These values are
measured in pixels.

• void SetPosition(int iX, int iY);

This method sets the values of the X,Y location of the window. These values are
measured in pixels relative to the desktop.

• void SetTitle(char *szTitle);

This method sets the window caption for the application window.

• void GetTitle(char *szTitle, int ilength);

This method sets the window caption for the application window.

• void Create(int ilD, char *szTitle);

This method creates a new application window.

• void *MsgPaint(void *mp1, void *mp2);

This method provides a generic window painter that can be used by any application
derived from C_ WINOOW _STD.

PM CLASS LIBRARY REFERENCE 479

480

C_WINDOW_CHILD window.hpp, winchild.hpp

The c_WINOOW_CffiLD class is used as the base for all child window classes.
This includes such objects as list boxes, edit controls, and pushbuttons.

Public Constructors and Destructors

• C_WINDOW_CHILD(void);

This constructor initializes the window class attributes.

• C WINDOW_CHILD(T_MSG_TABLE *pxtMsg);
Thls constructor initializes the window class attributes, and assigns a message table for
the window object.

• C WINDOW CHILD(C_WINDOW *pxcParentObj, T_MSG_TABLE *pxtMsg);
Thls construc;or initializes the window class attributes, and assigns a message table for
the window object. The pxcParentObj parameter specifies the owner window.

Public Members and Attributes

• void ParentObject(C_WINDOW *pxcParentObj);
This method sets the owner window object of the window. This is normally performed
as part of the construction process; use of this method after the window has been
instantiated is not recommended.

• void Create(int ilD, int iMode, char *szTitle, int iX, int iY, int iCX, int iCY);

This method creates a new child control window.

• void Create(int ilD, char *szTitle);

This method creates a new application window.

• void SetSizePosition(int iX, int iY, int iCX, int iCY);
This method sets the values of the X,Y location of the window, as well as the width and
height. These values are measured in pixels relative to the owner window.

• void SetSize(int iCX, int iCY);
This method sets the values of the width and height of the window. These values are
measured in pixels.

• void SetPosition(int iX, int iY);
This method sets the values of the X,Y location of the window. These values are
measured in pixels relative to the owner window.

PM CLASS LIBRARY REFERENCE I APPENDIX B

C_DIALOG window.hpp, dlalog.hpp

The C_ WINDOW _DIALOG class is used as a C ++ wrapper for dialog boxes stored
within application resource files. This allows the PM CLASS classes to interact with
traditional PM resources.

Public Constructors and Destructors

• C_DIALOG(C_WINDOW *pxcParentObj, T_MSG_TABLE *pxtMsg);

This constructor initializes the window class attributes, and assigns a message table for
the dialog object. The pxcParentObj parameter specifies the owner window.

Public Members and Attributes

• void Create(int ilD);

This method associates the dialog resource having the specified resource identifier
with the parent window.

• void Process(void);

This method processes the dialog box.

• void Close(void);

This method closes the dialog window.

C_LISTBOX window.hpp, winchlld.hpp, listbox.hpp

The C_LISTBOX class implements the code required to support the list box con
trol.

Public Constructors and Destructors

• C_LISTBOX(C_WINDOW *pxcParentObj, int ilD, int iMode);

This constructor initializes the list box class. The pxcParentObj parameter specifies the
owner window.

• C_LISTBOX(C_WINDOW *pxcParentObj, int ilD);

This constructor initializes the list box class. The pxcParentObj parameter specifies the
owner window.

• C_LISTBOX(C_DIALOG *pxcParentObj, int ilD, int iMode);

This constructor initializes the list box class. The pxcParentObj parameter specifies the
owner dialog resource.

Public Members and Attributes

• void Insert(char *szText, int iHow);

This method inserts a test item into the list box; iHow specifies how the item is inserted
(i.e., at the end of the list).

PM CLASS LIBRARY REFERENCE 481

482

• void Delete(int iltem) ;
This method removes the specified item from the list box control.

• void DeleteAll(void) ;
This method removes all items from the list box control.

• void Select(int iltem, BOOL bBoolean);
This method selects or deselects the specified item.

• int Selection(int iFrom);
This method returns the item number of the current selection.

• int ltemCount(void);
This method returns the number of items in the list box control.

• void Item Text(int iltem, char *szString, int iBufferSize);
This method returns the text associated with the specified item number.

C_STATUS window.hpp, winchild.hpp, status.hpp

The C_STATUS class implements the code required to support the status line
control.

Public Constructors and Destructors

• C_STATUS(C_WINDOW *pxcParentObj);
This constructor initializes the status class attributes. The pxcParentObj parameter
specifies the owner window.

Public Members and Attributes

• void Text(char *szFormat, ...);
This method inserts a printf-style string of text into the status line.

C_MENU window.hpp, winchild.hpp, menu.hpp

The C_MENU class implements the code required to support the menu control.

Public Constructors and Destructors

• C_MENU(C_WINDOW *pxcParentObj);
This constructor initializes the menu class attributes. The pxcParentObj parameter
specifies the owner window.

Public Members and Attributes

• void Enableltem(int ilDltem);
This method enables the specified menu item.

PM CLASS LIBRARY REFERENCE I APPENDIX B

• void Disableltem(int ilDltem);

This method disables the specified menu item.

• void SetltemText(int ilDltem, char *szText);

This method sets the text for the specified menu item.

• void GetltemText(int ilDltem, char *szText, int iSize);

This method returns the text for the specified menu item.

C_SLIDER window.hpp, winchild.hpp, slider.hpp

The C_SLIDER class implements the code required to support the slider control.

Public Constructors and Destructors

• C_SLIDER(C_WINDOW *pxcParentObj, int ilD, int iMode, int ilncrements, int iScale);
This constructor initializes the slider class attributes. The pxcParentObj parameter
specifies the owner window. The ilncrements and iScale values specify the number of
increments on the slider and the spacing between increments.

• C_SLIDER(C_DIALOG *pxcParentObj, int ilD);

This constructor initializes the slider class attributes. The slider control is located
within a dialog resource.

Public Members and Attributes

• void Scale(int ilncrements, int iSpacing);

This method sets the scale and increment for the slider. This is normally performed as
part of the construction process.

• void Value(int iValue);

This method sets the slider position value.

C_BUTTON window.hpp, winchild.hpp, button.hpp

The C_BUTTON class implements the code required to support the toolbar button
control.

Public Constructors and Destructors

• C_BUTION(void);

This constructor initializes the toolbar button class attributes.

• C_BUTION(C_WINDOW *pxcParentObj);

This constructor initializes the toolbar button class attributes. The pxcParentObj
parameter contains a pointer to the owner object-typically a toolbar window.

PM CLASS LIBRARY REFERENCE 483

484

Public Members and Attributes

• void Initialize(int iButtonlD, int iXPos, int iYPos, int iUp, int iDn, int iDis, char *szText);

This method initializes the toolbar button class attributes. Typically this is called only
during the construction process.

• void State(int iNewState) ;
This method sets the state of the button (i.e., Up, Down, or Disabled).

• void Toggle(void);
This method toggles the state of the button from up to down, or vice versa.

C_TOOLBAR window.hpp, winchild.hpp, tbar.hpp

The C_TOOLBAR class implements the code required to support ti:ie toolbar co:r~
trol. The toolbar window is essentially a regular child window, with some addi
tional visual components, such as a chiseled border.

Public Constructors and Destructors

• C_TOOLBAR(C_WINDOW *pxcParentObj, int iTBarlD, iTBarHeight);

This constructor initializes the toolbar class attributes. The pxcParentObj parameter
contains a pointer to the owner object-typically an application window.

• -C_TOOLBAR(void);

This destructor deallocates the class and resets the button count.

Public Members and Attributes

• void Status(C_STATUS *pxcStatusWindow);
This method sets the internal pointer to the status line window used to display the fly
over toolbar text.

• void CreateButtons(T _BUTION_TABLE *pxtButtonTable);
This method creates button objects for each item in the supplied button table, adding
them to the toolbar window.

• void ButtonData(int ilD);
This method returns a pointer to the button object for the specified button identifier.

• void Button Toggle(int ilD);
This method toggles the button for the specified button identifier.

• void ButtonState(int ilD, int iState);
This method sets the state for the button with the specified identifier.

• void ButtonEnable(int ilD, int iValue);

This method enables/disables the button with the specified identifier.

PM CLASS LIBRARY REFERENCE I APPENDIX B

C_MLE window.hpp, winchild.hpp, mle.hpp

The C_MLE class implements the code required to support the multiline editor bar
control. This includes all the functionality supported by Presentation Manager,
plus the ability to save or load the contents of the MLE to disk.

Public Constructors and Destructors

• C_MLE(C_WINDOW *pxcParentObj, int iMLEID, iMode);

This constructor initializes the MLE class attributes. The pxcParentObj parameter
contains a pointer to the owner object-typically an application window. The iMode
parameter specifies any additional operating system specific control parameters.

• C_MLE(C_WINDOW *pxcParentObj, int iMLEID);

This constructor initializes the MLE class attributes. The pxcParentObj parameter
contains a pointer to the owner object-typically an application window.

Public Members and Attributes

• void ReadOnlyStatus(short iBool);

This sets or resets the read-only status of the MLE.

• void WordWrap(int iBool) ;

This method sets or resets the word wrap status of the MLE.

• void ResetDirtyBufferFlag(void) ;

This method resets the flag that keeps track of changes to the contents of the editor
control.

• int lsBufferDirty(void);

This method returns the value of the flag that keeps track of changes to the MLE buffer.

• void Copy(void) ;

This method copies the current MLE selection to the clipboard.

• void Cut(void);

This method cuts the current MLE selection to the clipboard.

• void Paste(void);

This method pastes the clipboard contents to the insertion point of the MLE buffer.

• void Clear(void) ;

This method clears the current selection from the MLE buffer.

• void UnDo(void);

This method undoes the last change to the MLE buffer.

PM CLASS LIBRARY REFERENCE 485

486

• LONG BufferLength(void);
This method returns the number of characters contained within the MLE buffer. This
includes all tabs, carriage controls, and other invisible characters.

• void DisableRefresh(void);
This method disables updates to the edit control.

• void EnableRefresh(void);

This method enables updates to the edit control.

• void Insert(char *szString) ;
This method inserts the supplied text into the MLE at the current insertion point.

• void Delete(LONG !Start, LONG ICount);
This method removes text from the MLE buffer, starting at the specified buffer offset
and spanning the number of characters supplied in !Count.

• void Select(LONG !Start, LONG IEnd);

This method selects MLE text within the specified range.

• void OuerySelection(LONG *pAnchor, LONG *pCursor);

This method returns the current selection range within the MLE.

• void TransferBuffer(char *szString, LONG ISize);
This method is specific to OS/2, and sets the transfer area to which MLE text will be
imported or exported.

• void ExportBuffer(LONG *ipStart, LONG *ipEnd);
This method exports the specified range of MLE text into the transfer area.

• void FindFirst(char *szString);
This method searches for the first instance of the specified text within the MLE buffer.

• void FindNext(void);
This method searches for the next instance of the specified text within the MLE buffer.

• LONG Line(LONG !Pointer);
This method returns the line number containing the specified offset.

• LONG Column(LONG lline);
This method returns the column number on the supplied line containing the cursor.

• LONG NumberOfLines(void);
This method returns the number of lines within the MLE buffer.

• void Load(C_STATUS *pxcStatus, char *szFileName);

This method loads the specified file into the MLE buffer.

• void Save(C_STATUS *pxcStatus, char *szFlleName);

This method saves the contents of the MLE to the specified file.

PM CLASS LIBRARY REFERENCE I APPENDIX B

C_CONTAINER window.hpp, winchild.hpp, contain.hpp

The ~-CONTAINER class implements the code required to support the CUA'91
container control.

Public Constructors and Destructors

• C_CONTAINER(C_WINDOW *pxcParentObj, int ilD, iView, int iFlags, int iMode);

This constructor initializes the container class attributes. The pxcParentObj parameter
contains a pointer to the owner object-typically an application window. The iMode
parameter specifies any additional operating system specific control parameters.

• C_CONTAINER(C_WINDOW *pxcParentObj, int ilD, iView, int iFlags);

This constructor initializes the container class attributes. The pxcParentObj parameter
contains a pointer to the owner object-typically an application window. The iMode
parameter specifies any additional operating system specific control parameters.

• C_CONTAINER(C_DIALOG *pxcParentObj, int ilD, iView, int iFlags);

This ~onstructor initializes the container class attributes. The pxcParentObj parameter
contams a pointer to the dialog object.

• -C_CONTAINER(void);

This destructor removes all items from the container and destroys it.

Public Members and Attributes

• void Setup(int iView, int iFlags);

This method sets up the view used for the container.

• void Allocate(ULONG iLength, USHORT iCtr);

This method allocates a number of container records of a specified size.

• void Insert(void *pParent, void *pRecord, int iCount, int iUpdate);

This method inserts one or more container records into the container.

• void Insert(void *pParent, void *pRecord, int iCount);

This method inserts one or more container records into the container, and forces the
container to update.

• void Remove(void) ;

This method removes all records from the container and frees the memory used for the
record structure.

• void Remove(void *pvData, short iCount) ;

This method removes a selected number of container records, starting with the record
specified in pvData.

PM CLASS LIBRARY REFERENCE 487

488

• void Redraw(void *pRecord);

This method forces the specified record to be redrawn; a value of zero forces all records

to be redrawn.

• void Sort(void *SortFunc) ;

This method sets the sort function used by the PM container manager to sort the

container records.

• void Search(void *pStart, char *szString, unsigned int iType);

This method searches the container for the specified string. The iType parameter is

used to specify which container view is searched.

• void *ParentRecord(void *hCurrent);

This method returns a pointer to the parent record of hCurrent. This method is used

only for tree view containers.

• void *FirstRecord(void);

This method returns the first record in the container.

• void *NextRecord(void *hCurrent);

This method returns the next record in the container. A return value of zero indicates

the end of the container.

• void *PreviousRecord(void *hCurrent);

This method returns the previous record in the container. A value of zero indicates that

the first record has been reached.

• void *MemoryFirstRecord(void) ;

This method returns the first record in the container's linked list.

• void *MemoryNextRecord(void *hCurrent);

This method returns the next record in the container's linked list. A return value of zero

indicates the end of the container.

• void *FirstChild(void *hCurrent);

This method returns the first child record of a specified parent in a tree view container.

• void *LastChild(void *hCurrent);

This method returns the last child record of a specified parent in a tree view container.

• void *FirstSelected(void);

This method returns the first record in the container that is selected.

• void *NextSelected(void *hCurrent);

This method returns the next record in the container that is selected.

• void ExpandTree(void *pRecord);

This method expands the specified parent record in a tree view container.

PM CLASS LIBRARY REFERENCE I APPENDIX B

• void Compress Tree(void *pRecord) ;

This method compresses the specified parent record in a tree view container.

• void SelectRecord(void *pRecord, short sBool);

This method selects or deselects the specified record.

C_LOG window.hpp, winchild.hpp, log.hpp

The C_LOG class implements the code required to support the debugging capabil

ities of PMCLASS.

Public Constructors and Destructors

• C_LOG(char *szlogFile, int ilogMode);

1:hl5 cons~ctor initializes the debugging log class. Output is written to the specified

file and optionally to a multiline editor window.

• -C_LOG(void);

This destructor removes the dynamic MLE object used by C_LOG, if that object was

created.

Public Members and Attributes

• void Open(void);

This method opens the debug log.

• void Write(char *szFormat, .. .);

This method closes the debug log.

• void Write(char *szFormat, ...);

This method writes a printf-style string to the debug log.

PM CLAss LIBRARY REFERENCE 489

Network Class Library Reference

C_CONNECT net.hpp

The C CONNECT class is used as a base class to derive more advanced classes to
imple~ent the hierarchy of TCP/IP protocols. It acts as the insulat?r be~e.en ~e
native TCP/IP API and network applications. Much of the functionality m this
simply wraps functions from the native APL

Public Constructors and Destructors

• C_CONNECT();
This constructor simply calls the Initialize() method to initialize the class attributes to
default values.

Public Members and Attributes

• void Initialize(void);
This method is normally called before the network connection is established. It
initializes the internal class attributes to their default values.

• int FindHost(void);
This method builds a host structure that will be used to connect a socket to a remote
host. This member function returns D_NET_HOST if there was an error determining
the host, or D_NET_OK if the operation was successfully completed.

490

• int Protocol(char *szProtocol);

This method builds a protocol structure based on the protocol string passed into the
routine in the szProtocol parameter. These protocol strings are defined in the
PROTOCOL file in the TCP/IP installation. If there was an error setting the protocol,
this member function returns D_NET_PROTOCOL, or D_NET_OK if the operation
was successfully completed.

• int StreamSocket(void);

This method sets the socket interface to stream type. This member function returns
D_NET_SOCKET if there was an error selecting stream type or D_NET_OK if the
operation was successfully completed.

• int RawSocket(void) ;

This method sets the socket interface to raw data transfer type. This member function
returns D_NET_SOCKET if there was an error selecting raw type, or D_NET_OK if the
operation was successfully completed.

• int Open(void);

This method opens a stream mode socket and creates a connection to the remote host.
This member function returns D_NET_CONNECT if there was an error connecting to
remote host, or D_NET_OK if the operation was successfully completed.

• void Close(void);

This method closes the connection to the remote host and shuts down the socket.

• int Send(char *szString);

This method writes the NULL terminated string passed in szString to the remote host,
using the protocol currently in use. This member function returns the number of bytes
written to the remote host.

• int ReceiveBuffer(char *szBuffer, int iSize) ;

This method retrieves lines of text from the remote host. The text is written to the
supplied szBuffer and is limited to the number of bytes specified in the iSize parameter.
This member function returns the number of bytes read from the remote host.

• void Receive(char *szBuffer);

This method reads the next complete line of text received from the server. Line
termination is stripped from the string. Care must be taken when using this method in
conjunction with the ReceiveBuffer() method, because C_CONNECT double buffers
received text from the remote host. ReceiveBuffer() operates outside the buffering code
at the lowest level, so it can extract text before this data gets buffered. This will result in
data loss. It is best to use the Receive() method for most interactions with the remote
host.

• void ReceiveFrom(char *pbyBuffer, short slength, struct sockadr *pxsFrom);

This method reads UDP packets from the specified socket. Any data received from the
socket specified in pxsFrom is written to the buffer pbyBuffer. The method is a simple
code wrapper for the TCP/IP API function recvfrom().

NETWORK CLASS UBRARY REFERENCE 491

492

• void SendTo(char *pbyBuffer, short slength);
This method writes UDP packets to the socket defined for the instance. The data
written is sourced from the buffer pbyBuffer. The method is a simple code wrapper for
the TCP/IP API function sendto().

• void LoadFile(char *szFilename);
This method reads any data arriving from the remote host and writes it to a file. The
process terminates and the file closes when an "\r\n. \r\n" character sequence is
detected. This type of data is used so frequently with TCP/IP protocols that it has been
implemented as a top-level method.

C_CONNECT_PING net.hpp, netping.hpp

The C_CONNECT_PING class implements the Ping segment of the ICMP proto
col, as specified by RFC 795. It has the capability of sending pings to a host and
receiving them back, accompanied by a time delay.

Public Constructors and Destructors

• C_CONNECT_PING(USHORT ildentity, char *szConnectServer);

This constructor initializes the C_CONNECT_PING class. It accepts an identity byte
tagged onto every Ping packet and is used as an identifier. szConnectServer contains
the address of the host being pinged.

Public Members and Attributes

• int Open(void);
This method creates and opens a Ping connection to the address specified when the
object was instantiated.

• int PingTx(BYTE *pbyPacket, int ilength);
This method transmits a ping packet of the specified size to the connected host. This
member function returns a D_NET_OK if the packet was transmitted correctly.

• int PingRx(BYTE *pbyPacket, char *szString);
This method receives a ping packet from the connected host. The member function
returns the number of bytes received.

C_CONNECT_NEWS net.hpp, netnews.hpp

The C_CONNECT_NEWS class implements the NNTP news protocol, as specified
by RFC 977. It implements the entire client specification for news, including some
extensions, such as overview support.

Public Constructors and Destructors

• C_CONNECT_NEWS(char *szConnectServer, int iConnectPort);
This constructor initializes the C_CONNECT_NEWS class. It accepts a server address
and a port number for the connection.

NETWORK CLASS LIBRARY REFERENCE I APPENDIX c

Public Members and Attributes

• int Open(void);

This method opens a connection to the news server.

• int Close(void);

This method closes the connection to the news server.

• int OpenPost(void);

This method initiates the posting of a new message.

• int ClosePost(void);

This method ends the posting of a new message. The new message is submitted to the
server for posting.

• int List(char *szFilename);

This method returns a list of news groups from the server.

• int ListNewGroups(char *szDate, char *szFilename);

This method returns a list of new news groups added to the server since the specified
date/time. szDate is specified as "YYMMDD HHMMSS". See RFC 977 for additional
specifiers.

• int Overview(ULONG !Start, ULONG IEnd, char *szFilename);

This method returns a message list overview for the current news group. The overview
spans the message range from !Start to lEnd.

• int Group(char *szGroup, ULONG *plFirstArticle, ULONG *pllastArticle,
ULONG *plTotal);

This method selects the specified news groups, and returns the first and last article
numbers for the group, along with the total number of articles.

• int First(ULONG !Article);

This method sets the internal server pointer to the specified article.

• int Next(ULONG *plArticle);

This method sets the internal server pointer to the next successive article, and returns
the article number.

• int Article(ULONG !Article, char *szFilename);

This method retrieves the specified article from the news server.

• int Body(ULONG !Article, char *szFilename);

This method retrieves the specified article body from the news server.

• int Head(ULONG !Article, char *szFilename);

This method retrieves the specified article body from the news server.

NETWORK CLASS LIBRARY REFERENCE 493

494

C_CONNECT_FTP net.hpp, netftp.hpp

The C_CONNECT_FfP class implements the FTP file transfer protocol, as speci
fied by RFC 959. It implements much of the specification for the client side of the
connection.

Public Constructors and Destructors

• C_CONNECT_FTP(char *szConnectServer, int iConnectPort, C_MLE *pxcConsole);

This constructor initializes the C_CONNECT_FI'P class. It accepts a server address and
a port number for the connection. pxcConsole contains a pointer to an optional
multiline edit control used to display commands and server responses.

Public Members and Attributes

• int Open(void);

This method opens a connection to the FfP server.

• int Close(void) ;

This method closes the connection to the FfP server.

• int Send(void);

This method sends a command to the FfP server.

• int Receive(void);

This method receives a response from the FfP server.

• int SYST(void);

This method sends a SYST command to retrieve the system server information.

• int SITE(char *szString);

This method sends a SITE command to send any site specific commands to the server.

• int ACCT(char *szString);

This method sends an ACCT command to send any account information to the server.

• int USER(char *szString);

This method sends a USER command to set the user name information.

• int PASS(char *szString);

This method sends a PASS command to send the user password to the server.

• int TYPE(char *szString);

This method sends a TYPE command to set the mode used for file transfers.

• int PWD(char *szString);

This method sends a PWD command to return the current working directory from the
server.

NETWORK CLASS LIBRARY REFERENCE I APPENDIX c

• int CWD(char *szString);

This method sends a CWD command to set the current working directory on the server.

• int RMD(char *szString);

This method sends an RMD command to remove a directory from the server.

• Int MKD(char *szString);

This method sends an MKD command to create a new server directory.

• int DELE(char *szString);

This method sends a DELE command to remove the specified command from the
server.

• int DIR(char *szString);

This method sends a DIR command to retrieve a directory listing from the server.

• int ABOR(char *szString);

This method sends an ABOR command to abort a file transfer.

• int RETR(char *szSrcFile, char *szDstFile);

This method sends a RETR command, retrieves the specified source file from the
server, and stores it on the local drive as szDstFile.

• int STOR(char *szSrcFile, char *szDstFile);

This method sends a STOR command to transfer the specified file from the local drive
to the server.

• int QUIT(char *szString);

This method sends a QUIT command to terminate the connection.

• int NOOP(char *szString);

This method sends a NOOP command to perform a "no operation."

NETWORK CLASS LIBRARY REFERENCE 495

A
Anchor block 27, 95
API

accept 303, 306
DosKillThread 56, 80
DosSleep 56
DosWaitThread 55
getprotobynarne 262
ioctl 8
listen 301
recv 49,303
recvfrom 270
select 316, 392
send 49, 306
sendto 269
shutdown 305
sock_init 48, 259
soclose 305
WinBeginPaint 141
WinCreateMsgQueue 27, 94
WinCreateStdWindow 28, 140
WinCreateWindow 24
WinDefDlgProg 152
WinDefWindowProc 29
WinDestroyMsgQueue 95
WinDispatchMsg 28
WinEnableMenultem 167
WinEndPaint 141
Winlnitialize 27, 94
WinlnvalidateRect 118
WinPostMsg 107
WinQueryPresPararn 117
WinQueryWindowPos 112

WinQueryWindowText 109
WinRegisterClass 27
WinRegisterWindow 120
WinSendMsg 107
WinSetPresParam 116
WinSetWindowPos 110
WinShowWindow 110
WinTerminate 27, 95
WinUpdateWindow 111

ARPANET 39

B
Barnes, David 14
Bitmaps 91, 166, 221, 241
Buttons 91, 99

c

Enabling, disabling 109
Minimize, maximize 129
System menu 129

Child window
Creating 145
Getting parent object 145
Setting parent object 144
Setting size, position 146-147

Class libraries 11
Code reuse 67
Command tables 91
Common User Access 32

497

Action bars 33
Editmenu 34
Helpmenu 35

Index

498

Keyboard accelerators 35
Compilers xii, 4-5, 7
Connections

Closing 266
Finding host for 260
Initializing 259
Loading text file from 271
Opening 264
Raw socket interface 263
ReceiveFrom method 270
Receiving data 268
Sending data 266
SendTo method 269
Setting protocol for 262
Streaming socket interface 263

Containers
Allocating record space 228
Columns in detail view 243
Compressing trees 242
Example sort function 233
Expanding trees 241
Extended selection in 225
Fast record manipulation 237
Finding child records 238
Inserting records 229
Parent records in tree view 234
Redrawing records 232
Removing records 231
Searching for data 233
Selecting records 242
Sorting 232

D

Style flags (CCS_) 224
Views 226

Datagram sockets 263
Debugging 245
DEF File

DATA 328
DESCRIPTION 328
HEAPSIZE 329
PROTMODE 329
STACKSIZE 329

Desktop
Height 96
Width 97

Dialog boxes

Border height 98
Closing 151
Creating 149
Creating with parent 150
Processing 150

Dynamic link libraries 10

E
E (OS/2 system editor) 327
Edit controls 201
Event semaphores 84

F
Files

DEF 328
RC 337
RES 337

FTP 262, 295, 322, 467
FTP connections

ABOR 316
Accepting data connection 303
ACCT 309
Closing 299
Closing data socket 305
CWD 313
DELE 314
DIR 315
Listening for data connection 301
MKD 314
NOOP 319
Opening 298
Out-of-band messaging 306
PASS 310
Putting file 306
PWD 312
QUIT 319
Receiving data 300
RETR 317
RMD 313
Sending data 300
Sending FTP commands 308
SITE 309
STOR 318
SYST 308
TYPE 311
USER 310

INDEX

G
Games, TCP/IP development for 467
Gopher 322
Gwinn,Ray 6

H
HAB 27
H1ML 14
Hungarian notation xi
Hypertext Markup Language 14

IBM
Developer Assistance Program 14
Developer Connection for OS/2 4, 467
Employee Written Software Library 14
Entertainment Developer's Toolkit 467
OS/2 Redbooks 4
TCP/IP Programmer's Toolkit 4, 7
TCP/IP utilities 4

ICLUI xii, 5, 69, 254
ICMP 259, 262-263, 272
Icon 130, 132, 140, 174, 177, 179, 181, 186,

221
ICONEDIT utility 174, 339
INI File 70

Closing 72
Opening 71
Reading from 73
Sample program 74
System 76
User 74
Writing to 73

INT 21 interface 20
International Standards Organization 40
Internet

OS/2 newsgroups 12
Useful FTP sites 13
Useful Gophers 13
Useful Web pages 14

Internet Relay Chat 321
IOCTL 20
IP Protocol 263
ISO/OSI 40

INDEX

L
Listbox

Counting items 162
Deleting all items 160
Deleting items 160
Inserting items 159
Querying item text 163
Querying selections 162
Selecting items 161
Style flags (LS_) 157

Logging debug information 245

M
MAKE 8-9
Menus

Disabling items 168
Enabling items 167
Getting item text 169
Height 98
Setting item text 168

Message tables 90
Microsoft

DOS 19
Windows 19
Windows 3.1 8, 322
Windows 95 254
Windows NT 8, 16-17, 254

MLE Style flags (MLS_) 204
Moskowitz, David 31
Motif 254
MPTS 3
Multiline edit controls

Clearing text 210
Clipboard operations 208
Deleting text 212
Detecting changes in 207
Enabling, disabling refresh 210
Getting buffer length 210
Inserting text 211
Insertion point column number 216
Insertion point line number 216
Loading from file 218
Number of lines 217
Querying text selections 212
Read only 206
Saving to file 219

499

500

Searching for text 215
Undoing changes 209
Word wrap 207

Multi-Protocol Transfer Services 3

Multithreading 54
Multi-User Dungeons 467

N
NeoLogic Network Suite viii, 4, 322

NETCLASS
c_coNNEcr 256
c_coNNECT_FTP 295
C_CONNECT_PING 272

C_NEWS_CONNECT 278

NETSTAT 6, 50
Network File System 263

News
Global memory use 405
Object message flow 403

Uudecode 452
News connections 286

Oosing 282
End posting 284
Getting newsgroups list 284

Listing new newsgroups 286

Loading article body 293

Loading article header 294

Loading articles 292
Loading newsgroup descriptions 285

Loading newsgroup overview 288

Opening 281
Selecting newsgroups 289

Server responses 281
Start posting 283

NFS 263
NMAKE 8
NNTP 264, 278, 295, 322, 393

NV CLASS
C_INI 70
C_INI_SYSTEM 76
C_INI_USER 74
C_SEM_EVENT 84
C_1HREAD 77, 380
C_1HREAD_PM 81

NVCLASS library 69

0
1 /lo second rule 6, 57, 63, 436

Object Windows Library 69

OpenDoc 393
OS/2

Architecture 20
Common User Access 32

Development tools 6
Memory management 19

Multitasking 18
Single message queue 17

Structure 20
Threading 18, 54
Useful FTP sites 13
Useful Gophers 13
Useful newsgroups 12
Useful Web pages 14
Virtual memory 19
Warp Bonus Pack 3, 17
What is it? 16

052.INI 75
OS20Memu 4, 6
OS2SYS.INI 76
OWL xii, 31, 69

p
Ping 44, 272
Ping connections

Opening 274
Packet checksum 278
Receiving packets 275
Transmitting packets 274

PM Message
WM_CHAR 367
WM_CLOSE 151
WM_COMMAND 91, 123, 152, 154,

192,198
WM_CONTROL 188
WM_ CREATE 28, 187, 409, 459

WM_INITDLG 153
WM_PAINT 29, 91, 141, 179

WM_QUIT 465
WM_SIZE 379

PM CLASS
C_APPLICATION 93
C_BUTTON_TBAR 174

INDEX

c_coNTAINER 221
C_DIALOG 148
C_EDIT 199
C_LISTBOX 156
C_LOG 245
C_MENU 166
C_MLE 202
C_PUSHBUITON 154
C_SLIDER 169
C_STATUS 163
C_TOOLBAR 183
C_WINDOW 99

c_ WINDOW _CiiILD 142

C_WINDOW_STD 126
Command tables 91
Message tables 90

Minimal example 30
Pointer Image 186
POP 271
Portability 68
PPP 41
Presentation Manager

Anchor block 27

C Source minimal example 24
Child windows 23

Control windows 24

Goals for applications 31

Header file minimal example 24

How does it work? 23

Initializing threads 83

Message model 17
Single message queue 17

Terminating threads 83
What is it? 21

PRJ2MAK 8
Pstat 6
Pulse 4, 6

R
Raw sockets 263
Reich, David 36
Resource Compiler 337
RFC 14, 38, 40

RFC 1055 41
RFC768 44
RFC 791 43
RFC 795 44, 272

INDEX

s

RFC826 44
RFC 959 45, 295, 454
RFC 977 287, 294

Semaphores 84
Closing 87
Creating 86

Opening existing 86
Posting 88
Resetting 87
Waiting for activation 88

Simonyi, Charles xi
SIO drivers 6
Sliders

Setting scale 173
Setting value 173
Style flags (SLS_) 170

SLIP 41
SMTP 271
Sockets

Datagram 263
Raw 263
Streaming 262

Status line 165
Streaming sockets 262

System Application Architecture 32

T
Taligent 393
TCP 41, 262, 266
TCP/IP

ARPANET 39
FTP 295,322
Gopher 322
ICMP 263, 272
IP 263
IRC 321

Minimum programming example 46

NNTP 264, 278, 295, 322, 393
Ping 272
POP 271
PPP 41
SLIP 41
SMTP 271
TCP 41, 262, 266

501

502

UDP 41, 263, 266
Utilities 4

Theseus/2 6
Threads

Creating 79
Killing 80
Use in PM programs 81
Waiting for completion 81

Toolbar buttons
Initializing 177
MsgBMButtonlDown method 180
MsgMouseMove method 178
MsgPaint method 179
Setting state 181
Toggling 181

Toolbars

u

Associating status line 192
Creating buttons 193
Enabling and disabling buttons 197
MsgBMButton method 188
MsgBMButtonlDown method 189
MsgBMText method 189
MsgCreate method 187
MsgMouseMove method 190
MsgPaint method 190
Sample code 198
Setting button state 196
Toggling buttons 195

UDP 41, 263, 266
UNIX 18-19, 68, 254

v
Visual development tools 5
VisualAge xii, 5
VisualBuilder 5

w
Warp Connect 3, 16
WatchCat 4, 6
WebExplorer 3
Window

Adding border 133

Adding icon 130
Adding maximize button 132
Adding minimize button 131
Adding titlebar 132
Creating 120, 140, 145
Destroying 121
Enabling, disabling 109
Getting background colors 117
Getting font 117
Getting foreground colors 117
Getting size, position 113--114, 135-137
Getting text 109
Getting window title 140
Handles 105
Hiding 110
HWND_DESKTOP 62, 105
HWND_OBJECT 62
Inserting into task list 134
Invalidating 118
MsgPaint method 141
Parent window 105
Posting messages 107
Registering 120
Retrieving class name 112
Sending messages 107
Setting background color 115
Setting class name 111
Setting command table 122
Setting focus 119
Setting font 116
Setting foreground color 114
Setting message table 122
Setting size, position 137-139, 146-147
Setting text 108
Setting window handle 106
Setting window title 139
Showing 110
Standard creation flags 129
Updating 111
Window procedure 123

Workplace Shell viii, 16, 135, 327, 332

x
X Windows 68, 254

INDEX

C OMM U NI CA r lONS

"This book is required reading for OS/2 programmers looking to build
distributed applications for the Internet or other networked environments."

Kelly Trammell, Partner, KPMC Ptal Marwick

code
TCP/IP

•

TCP/ IP PROGRAMMING FOR OS/2
Steven Gutz

The exploding Internet marketplace beckons program
mers to jump into this fast lane of programming. Up to
now, the publishing world has more or less ignored the
a:,/2 programmer who wants to develop applications for
i CP/ IP. Steven Cutz fills the void by providing detailed
techniques for creating effective TCP/IP applications
using the C or C++ language. He develops complete 05/2
TCP/ IP applications for ping, news, gopher, and FTP
(complete source code is provided in the companion
disk).

WHAT'S INSIDE
• Developing a class library for nonvisual objects
• Developing a simple PM class library
• Developing a network interface class library
• Building applications

• An improved editor
• A simple PM ping
• A simple news client
• A basic FTP client

This is not a "TCP/IP for Dummies" book. You should be
an intermediate to advanced programmer, preferably with
some 05/2 experience, who is comfortable with C++ and
the concepts of object oriented programming.

STEVEN GUTZ has been developing software for more
than 12 years, lately focusing on OS/2 programs, and has
written countless applications for the atomic energy, laser,
and communications industries. lie is the President of
NeoLogic, Inc., which spe·
ciali:zes in the development
of OS/2 programs for the
Internet

Manning ISBN: 1-884777-17-1
P-H ISBN: 0-13-261249·6

ISBN 0-13·2bl249·b

	Cover
	TCP/IPPROGRAMMINGFOR OS/2
	Contents
	Preface
	Part 1: Getting Started
	OS/2 and Presentation Manager Basics
	TCP/IP Basics
	Considerations for System Performance

	Part 2: Building Class Libraries
	Developing a Class Libraryfor Nonvisual Objects
	Developing a Simple PM Class Library
	Developing a Network Interface Class Library

	Part 3: Building Applications
	An Improved Editor
	A Simple PM Ping
	A Simple News Client
	A Basic FTP Client

	A: Nonvisual Class Library Reference
	B: PM Class Library Reference
	C: Network Class Library Reference
	Index
	BackCover

